Math 2326 - Introduction to Abstract Mathematics Assignment 33 - Due Friday, April 18

Problem 108: Let $p \in \mathbb{Q}, p \neq 0$, and $x \in \mathbb{R}-\mathbb{Q}$. Show that $p x, p+x$ are irrational. Give an example of x, y irrational such that $x+y$ and $x y$ are rational.

Problem 109: Show that there is no rational number whose square is 2 .

Problem 110: Finish the proof that $\alpha=\sup \left\{x \in \mathbb{R} \mid x \geq 0, x^{2}<2\right\}=\sqrt{2}$ by showing that the case $\alpha^{2}>2$ leads to a contradiction.

Problem 111: Let $A \subseteq \mathbb{R}$ be a nonempty bounded set. Given $c>0$, consider the set $c \cdot A=\{c x \mid x \in A\}$. Show that $c \cdot A$ is bounded, and in fact, $\sup (c \cdot A)=c \sup A$ and $\inf (c \cdot A)=c \inf A$.

