Math 2326 - Introduction to Abstract Mathematics Assignment 34 - Due Monday, April 21

Problem 112: Finish the proof of the Nested Interval Property as indicated in the classroom.

Theorem: Let $I_{n}=\left[a_{n}, b_{n}\right] \subseteq \mathbb{R}$ be a nonempty interval for each $n \in \mathbb{N}$. Assume that $I_{n+1} \subseteq I_{n}$. Then $\bigcap_{n=1}^{\infty} I_{n} \neq \emptyset$, that is, there is $x \in \mathbb{R}$ so that $x \in I_{n}$, for all $n \in \mathbb{N}$.
Furthermore, $\bigcap_{n=1}^{\infty} I_{n}=[a, b]$, where $a=\sup \left\{a_{n}\right\}$ and $b=\inf \left\{b_{n}\right\}$.

Problem 113: Prove the following:
Lemma: Given $I=[a, b] \neq \emptyset$ and $x \in \mathbb{R}$, there exists $J=[c, d] \neq \emptyset$ with $x \notin J$ and $J \subseteq I$.

Problem 114: Finish the inductive step in the proof that \mathbb{R} is uncountable given during the lecture.

