Math 2326 - Introduction to Abstract Mathematics
 Assignment 4 - Due Monday, January 28

In Problems 15 through 17, prove the given statement.

Problem 15:

There exists $n \in \mathbb{Z}$ so that $n^{2}+2 n+1=0$.

Problem 16:

There exist infinitely many $m \in \mathbb{Z}$ so that 5 divides $3 m-1$.

Problem 17:

For all $r, s \in \mathbb{Q}, r+s \in \mathbb{Q}$ and $r s \in \mathbb{Q}$.

Problem 18: Consider the following proposition and its proof.
Proposition. For all $a, b \in \mathbb{N}, a^{2} \neq 2 b^{2}$.
Proof. Assume that there exist $a, b \in \mathbb{N}$ so that $a^{2}=2 b^{2}$. Let m be the number of times 2 occurs in the prime factorization of a and let n be the number of times 2 occurs in the prime factorization of b. Then $2 m$ is the number of times 2 occurs in the prime factorization of a^{2} and $2 n+1$ is the number of times 2 occurs in the prime factorization of $2 b^{2}$. Since $a^{2}=2 b^{2}$ and prime factorizations are unique, it must be the case that $2 m=2 n+1$. We conclude that $2 m$ is both even and odd, which is a contradiction. Therefore, for all $a, b \in \mathbb{N}, a^{2} \neq 2 b^{2}$.
a. Find statements P and Q so that the proposition can be expressed in the form "If P then Q."
b. Express the assumption made at the beginning of the proof in terms of P and Q.
c. Let R be the statement " $2 m$ is even." Express the conclusion of the proof in terms of only R and logical connectives.
d. Explain why this is a valid proof of the proposition.

