Math 2326 - Introduction to Abstract Mathematics Assignment 5-Due Wednesday, January 30

In Problems 19 through 21, use proof by contradiction or contrapositive to establish the given statement.

Problem 19:

Let $a, b \in \mathbb{Z}$. Prove that if $a \neq 0, \pm 1$ then a cannot divide both b and $b+1$.

Problem 20:

If $f(x)=x^{3}+x+1$ then the equation $f(x)=0$ has exactly one real solution. [Hint: You may want to review the Intermediate and Mean Value Theorems from Calculus I.]

Problem 21:

Let $x, y, z \in \mathbb{Q}$. If $x+y \geq z$ then $x \geq z / 2$ or $y \geq z / 2$.

Problem 22:

Consider the following proposition:
Proposition. For every real number $x, x^{2} \geq 0$.
What's wrong with the following proof of this proposition?
Proof. Suppose not. Then for every real number $x, x^{2}<0$. In particular, plugging in $x=3$ we would get $9<0$, which is clearly false. This contradiction shows that for every number $x, x^{2} \geq 0$.

