Math 2326 - Introduction to Abstract Mathematics Assignment 8 - Due Wednesday, February 6

Problem 31:

Let A, B, C be sets. Prove that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ and $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

Problem 32:

Let A_1, A_2, \ldots, A_n be subsets of a universal set X. Prove DeMorgan's Laws:

a.
$$\left(\bigcup_{i=1}^n A_i\right)^c = \bigcap_{i=1}^n A_i^c.$$

b.
$$\left(\bigcap_{i=1}^{n} A_i\right)^c = \bigcup_{i=1}^{n} A_i^c$$
.

Problem 33:

Let A and B be sets.

- a. Use Venn diagrams to conjecture a relationship between $(A \cup B) (A \cap B)$ and $(A B) \cup (B A)$.
- b. Prove your conjecture.

Problem 34:

- a. Is the set difference associative? That is, is it true that A (B C) = (A B) C for all sets A, B, C? Prove your assertion.
- b. The symmetric difference of two sets A and B is defined to be $A\Delta B = (A B) \cup (B A)$. Is the symmetric difference associative? That is, is it true that $A\Delta(B\Delta C) = (A\Delta B)\Delta C$ for all sets A, B and C? Prove your assertion.