Math 2326 - Introduction to Abstract Mathematics Assignment 8 - Due Wednesday, February 6

Problem 31:

Let A, B, C be sets. Prove that $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$ and $A \cup(B \cap C)=$ $(A \cup B) \cap(A \cup C)$.

Problem 32:

Let $A_{1}, A_{2}, \ldots, A_{n}$ be subsets of a universal set X. Prove DeMorgan's Laws:
a. $\left(\bigcup_{i=1}^{n} A_{i}\right)^{c}=\bigcap_{i=1}^{n} A_{i}^{c}$.
b. $\left(\bigcap_{i=1}^{n} A_{i}\right)^{c}=\bigcup_{i=1}^{n} A_{i}^{c}$.

Problem 33:

Let A and B be sets.
a. Use Venn diagrams to conjecture a relationship between $(A \cup B)-(A \cap B)$ and $(A-B) \cup(B-A)$.
b. Prove your conjecture.

Problem 34:

a. Is the set difference associative? That is, is it true that $A-(B-C)=(A-B)-C$ for all sets A, B, C ? Prove your assertion.
b. The symmetric difference of two sets A and B is defined to be $A \Delta B=(A-$ $B) \cup(B-A)$. Is the symmetric difference associative? That is, is it true that $A \Delta(B \Delta C)=(A \Delta B) \Delta C$ for all sets A, B and C ? Prove your assertion.

