Intro to Abstract Math
Homework 4
Fall 2009
Due September 11

Exercise 10. Let P, Q and R be statements. Verify the following logical equivalences.
a. $P \wedge(Q \vee R) \cong(P \wedge Q) \vee(P \wedge R)$
b. $(\neg P) \rightarrow(R \wedge(\neg R)) \cong P$
c. $\neg(P \rightarrow Q) \cong P \wedge(\neg Q)$
d. $P \rightarrow(Q \wedge R) \cong(P \rightarrow Q) \wedge(P \rightarrow R)$
e. $P \leftrightarrow Q \cong(P \wedge Q) \vee((\neg P) \wedge(\neg Q))$

Definition: Let $m, n \in \mathbb{Z}$. We say that m divides n if there is a $k \in \mathbb{Z}$ so that $n=k m$.

Exercise 11. Let $a, b, c \in \mathbb{Z}$. Prove that if a divides both b and c then a divides $b+c$.

Exercise 12. Let $a, b, c \in \mathbb{Z}$. Prove that if a divides both b and c then a divides $b c$. Can you modify your proof to yield a slightly stronger statement?

