

Intro to Abstract Math Fall 2009

Homework 4 Due September 11

Exercise 10. Let P, Q and R be statements. Verify the following logical equivalences.

a. $P \land (Q \lor R) \cong (P \land Q) \lor (P \land R)$ **b.** $(\neg P) \rightarrow (R \land (\neg R)) \cong P$ **c.** $\neg (P \rightarrow Q) \cong P \land (\neg Q)$ **d.** $P \rightarrow (Q \land R) \cong (P \rightarrow Q) \land (P \rightarrow R)$ **e.** $P \leftrightarrow Q \cong (P \land Q) \lor ((\neg P) \land (\neg Q))$

Definition: Let $m, n \in \mathbb{Z}$. We say that m divides n if there is a $k \in \mathbb{Z}$ so that n = km.

Exercise 11. Let $a, b, c \in \mathbb{Z}$. Prove that if a divides both b and c then a divides b + c.

Exercise 12. Let $a, b, c \in \mathbb{Z}$. Prove that if a divides both b and c then a divides bc. Can you modify your proof to yield a slightly stronger statement?