Intro to Abstract Math

Exercise 13. Let $x, y \in \mathbb{Z}$. Prove that if $x y$ is odd then x and y are both odd.

Exercise 14. Prove that all prime numbers greater than 2 are odd.

Exercise 15. Show that $\log _{2}(3)$ is irrational.

Notation: For $a, b \in \mathbb{Z}$ if a divides b we write $a \mid b$.
Definition: An natural number $p \geq 2$ is called prime if the only natural numbers that divide p are 1 and p.

Theorem: Let $a, b \in \mathbb{Z}$ and $p \in \mathbb{N}$. If p is prime and $p \mid a b$ then $p \mid a$ or $p \mid b$.

Recall: $\log _{a}(x)=y$ if and only if $a^{y}=x$.

