Intro to Abstract Math
Homework 8
FALL 2009
Due September 23

Exercise 25. Let $a, b, c \in \mathbb{Z}$. Prove that if $a \mid b$ and $b \mid c$ then $a \mid c$.

Exercise 26. Prove that for all $n \in \mathbb{N}, 5^{n}-1$ is divisible by 4 .

Exercise 27. Assume that n is an integer. Prove that for all $n \geq 2, n$ can be written as a product of primes (defined below). [Hint: Modify the proof on prime numbers given in class.]

Definition: Let $n \in \mathbb{Z}$. We say that n is a product of primes if there exist $r \in \mathbb{N}$ and prime numbers $p_{1}, p_{2}, \ldots, p_{r}$ (not necessarily distinct) so that $n=p_{1} p_{2} \cdots p_{r}$. Notice that, since we can have $r=1$, every prime number is a product of primes.

