Intro to Abstract Math

Exercise 25. Verify the following claims made in class.
a. For all $n \in \mathbb{N}$ and all $1 \leq k \leq n$

$$
\binom{n+1}{k}=\binom{n}{k}+\binom{n}{k-1}
$$

b. For all $n, l \in \mathbb{N}$

$$
l(l+1) \cdots(l+(n-1))=n!\binom{n+l-1}{l-1}
$$

Exercise 26. Prove that for all $n \in \mathbb{N}$

$$
2(\sqrt{n+1}-1)<1+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{n}}
$$

Exercise 27. Define a sequence of integers recursively by

$$
\begin{aligned}
a_{1} & =a_{2}=1 \\
a_{n+1} & =a_{n}+2 a_{n-1}, \text { for } n \geq 2
\end{aligned}
$$

a. Write out the first 8 terms of the sequence.
b. Guess an explicit formula for $a_{n}$. Hint: Multiply the numbers you found in part (a) by 3.
c. Prove that your formula is correct.

