

Intro to Abstract Math

Exercise 31. Let A, B and C be sets. Show that $A-(B \cup C)=(A-B) \cap(A-C)$.

Exercise 32. Let A and B be sets. Prove that if $A \subseteq B$ then $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.

Exercise 33. Prove that for all $n \geq 0$, if A is a set with exactly n elements then $\mathcal{P}(A)$ has exactly 2^{n} elements.

