Intro to Abstract Math Homework 14 FALL 2009

Exercise 40. Recall the equivalence relation

$$
Q=\{((a, b),(c, d)) \mid a d-b c=0\}
$$

on $\mathbb{Z} \times \mathbb{N}$.
a. Determine the equivalence class of $(a, b) \in \mathbb{Z} \times \mathbb{N}$.
b. Write out several elements (at least 5) of $[(1,2)]$. Do the same for $[(3,4)]$. Do you see a pattern?

Exercise 41. Let $n \in \mathbb{N}, n \geq 2$. Let \equiv_{n} denote the relation on \mathbb{Z} given by

$$
\{(a, b) \mid n \text { divides } a-b\}
$$

a. Prove that \equiv_{n} is an equivalence relation on \mathbb{Z}.
b. Determine the equivalence class of $a \in \mathbb{Z}$.
c. By looking at a few cases with small values of n, make a guess as to how many equivalence classes there are.

