

Intro to Abstract Math
Homework 15
FALL 2009

Exercise 42. Let $S \subseteq \mathcal{P}(A)$ be a partition of A. Let $\sim=\{(x, y) \mid(\exists X \in S)(x, y \in X)\} \subseteq$ A^{2}. Show that \sim is an equivalence relation on A.

Exercise 43. Recall the equivalence relation $\equiv_{2}=\{(a, b) \mid 2$ divides $a-b\}$ on \mathbb{Z} of Exercise 41.
a. Show that $\mathbb{Z} / \equiv_{2}=\{[0],[1]\}$.
b. Let $X_{1}=\{n \in \mathbb{Z} \mid n$ is odd $\}$ and $X_{2}=\{n \in \mathbb{Z} \mid n$ is even $\}$. Show that the partition $\left\{X_{1}, X_{2}\right\}$ of \mathbb{Z} is the same as the set \mathbb{Z} / \equiv_{2}.

