Exercise 47. Let $A=\{1,2,3\}$ and $B=\{\diamond, \odot\}$. Show that there is no injection $f: A \rightarrow B$.

Exercise 48. Let $f: X \rightarrow Y$ be a function.
a. If $A_{i} \subset X$ for $i \in I$, prove that

$$
f\left(\bigcap_{i \in I} A_{i}\right) \subseteq \bigcap_{i \in I} f\left(A_{i}\right)
$$

Find an example to show that these two sets need not be equal.
b. If $B_{i} \subset Y$ for $i \in I$, prove that

$$
f^{-1}\left(\bigcap_{i \in I} B_{i}\right)=\bigcap_{i \in I} f^{-1}\left(B_{i}\right) .
$$

Exercise 49. Show that $h:[-3, \infty) \rightarrow[1, \infty)$ given by $h(x)=1+\sqrt{x+3}$ is a bijection.

Exercise 50. Let A be a set. Recall the function $g: \mathcal{P}(A) \rightarrow \mathcal{P}(A)$ given by $g(X)=A-X$. We have already seen that this function is a surjection. Prove that, in fact, it is a bijection.

Exercise 51. Let A be a non-empty set and let $f: A \rightarrow \mathcal{P}(A)$ be any function. Show that f is not surjective. Hint: Consider $S=\{a \in A \mid a \notin f(a)\} \in \mathcal{P}(A)$.

