Intro to Abstract Math

Exercise 52. Let f and g be functions from X to Y. Prove that $f=g$ if and only if $f(x)=g(x)$ for all $x \in X$.

Exercise 53. Let $f: \mathbb{R} \rightarrow[-4, \infty)$ be given by $f(x)=(x+1)^{2}-4$ and let $g:[-4, \infty) \rightarrow \mathbb{R}$ be given by $g(x)=-1-\sqrt{4+x}$.
a. Compute $f \circ g$ and $g \circ f$.
b. Are f and g inverses? Be sure to justify your answer.

Exercise 54. Let $f:[0,1] \rightarrow[0,1]$ be given by $f(x)=\sqrt{1-x^{2}}$, let $g: \mathbb{R} \rightarrow \mathbb{R}$ be given by $g(x)=x^{3}+1$ and let $h: \mathbb{R} \rightarrow \mathbb{R}$ be given by $h(x)=\sqrt[3]{x-1}$.
a. Show that $f=f^{-1}$.
b. Show that $g=h^{-1}$.

Exercise 55. Let $X=\mathbb{R}-\{3\}$. Define $f: X \rightarrow \mathbb{R}$ by $f(x)=x /(x-3)$.
a. Show that f is not a bijection.
b. Find a set $Y \subseteq \mathbb{R}$ so that the function $g: X \rightarrow Y$, given by the same formula as f, is a bijection.
c. Find g^{-1}.

