Intro to Abstract Math

Exercise 56. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be functions.
a. Prove that if f and g are both surjective, then $g \circ f$ is surjective.
b. Prove that if f and g are both bijective, then $(g \circ f)^{-1}=f^{-1} \circ g^{-1}$. Hint: Compose the latter with $g \circ f$ and use the fact that inverses are unique.

Exercise 57.

a. Show that if $x \geq 0$ then $-4 \leq \frac{x^{2}-4}{x^{2}+1}<1$.
b. Let $f:[0, \infty) \rightarrow[-4,1)$ be defined by $f(x)=\frac{x^{2}-4}{x^{2}+1}$. Show that f is a bijection and find f^{-1}. Hint: If you can find the inverse of f, this will prove f is a bijection.

Exercise 58. Let \mathcal{S} denote the collection of all sets. Prove that

$$
\approx=\left\{(X, Y) \in \mathcal{S}^{2} \mid \text { there is a bijection } f: X \rightarrow Y\right\}
$$

is an equivalence relation on \mathcal{S}.

