Intro to Abstract Math FALL 2009

Exercise 60. Prove that for all $n \in \mathbb{N}, f: I_{n} \rightarrow I_{n}$ is an injection if and only if it is a surjection.

Exercise 61. Let α and β denote the elements of S_{3} with two-row representations

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right) \text { and }\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right)
$$

respectively. Prove that every element of S_{3} can be obtained as a combination of α and β.

Exercise 62. Let $n \in \mathbb{N}, n \geq 2$, and let $i, j \in I_{n}$. Assume that $i \neq j$. Define $T: I_{n} \rightarrow I_{n}$ by

$$
T(x)= \begin{cases}x & \text { if } x \neq i \text { and } x \neq j \\ j & \text { if } x=i \\ i & \text { if } x=j\end{cases}
$$

a. Prove that $T \in S_{n}$. The function T is called a transposition.
b. What is the two-row description of T ?

