

Intro to Abstract Math Fall 2009

Homework 22 Due November 4

Exercise 63. Prove or disprove the following statements.

- **a.** Subtraction is a binary operation on \mathbb{Z} .
- **b.** Subtraction is a binary operation on \mathbb{N} .
- **c.** Division is a binary operation on \mathbb{N} .
- **d.** Division is a binary operation on \mathbb{Q} .

Exercise 64. Let

$$\begin{aligned} \mathrm{Id} &= \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \quad \alpha = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \quad \beta = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \\ \gamma &= \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \quad \delta = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \quad \epsilon = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \end{aligned}$$

denote the elements of S_3 . We have seen that function composition is a binary operation on S_3 . Complete the following "composition table," which gives the results of composing any two elements of S_3 . The entry in the x row and y column is xy. The first two rows have been completed for you as an example.

	Id	α	β	γ	δ	ϵ
Id	Id	α	β	γ	δ	ϵ
α	α	Id	δ	ϵ	β	γ
β						
γ						
δ						
ϵ						

Exercise 65. If we let R_{θ} denote counterclockwise rotation by θ degrees, H denote the flip across the vertical axis, V denote the flip across the horizontal axis, and F_i (i = 1, 2) denote the diagonal flips, then recall that the complete set if symmetries of the square is

$$D_4 = \{R_0, R_{90}, R_{180}, R_{270}, V, H, F_1, F_2\}.$$

Compute the "composition table" for D_4 as you did for S_3 above.