Exercise 63. Prove or disprove the following statements.
a. Subtraction is a binary operation on \mathbb{Z}.
b. Subtraction is a binary operation on \mathbb{N}.
c. Division is a binary operation on \mathbb{N}.
d. Division is a binary operation on \mathbb{Q}.

Exercise 64. Let

$$
\begin{aligned}
\operatorname{Id} & =\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right), \quad \alpha=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right), \quad \beta=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right), \\
\gamma & =\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right), \quad \delta=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right), \quad \epsilon=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right)
\end{aligned}
$$

denote the elements of S_{3}. We have seen that function composition is a binary operation on S_{3}. Complete the following "composition table," which gives the results of composing any two elements of S_{3}. The entry in the x row and y column is $x y$. The first two rows have been completed for you as an example.

	Id	α	β	γ	δ	ϵ
Id	Id	α	β	γ	δ	ϵ
α	α	Id	δ	ϵ	β	γ
β						
γ						
δ						
ϵ						

Exercise 65. If we let R_{θ} denote counterclockwise rotation by θ degrees, H denote the flip across the vertical axis, V denote the flip across the horizontal axis, and $F_{i}(i=1,2)$ denote the diagonal flips, then recall that the complete set if symmetries of the square is

$$
D_{4}=\left\{R_{0}, R_{90}, R_{180}, R_{270}, V, H, F_{1}, F_{2}\right\} .
$$

Compute the "composition table" for D_{4} as you did for S_{3} above.

