Intro to Abstract Math
Homework 24
FALL 2009

Exercise 69. Write out the Cayley tables for $\left(\mathbb{Z}_{2},+_{2}\right),\left(\mathbb{Z}_{3},+_{3}\right)$ and $\left(\mathbb{Z}_{4},+_{4}\right)$.

Exercise 70. Let $n \in \mathbb{N}, n \geq 2$.
a. Let $a \in \mathbb{Z}_{n}$. Show that if $x \cdot{ }_{n} a=x$ for all $x \in \mathbb{Z}_{n}$, then $a=1$.
b. Show that $\left(\mathbb{Z}_{n}, \cdot{ }_{n}\right)$ is never a group.

Exercise 71. Let $n \in \mathbb{N}$ and $n \geq 2$. Let $\mathbb{N}_{n}=\mathbb{Z}_{n}-\{0\}$.
a. For $n=2,3,4,5,6$, determine if \cdot_{n} is a binary operation on \mathbb{N}_{n}.
b. For the n from part a for which \cdot_{n} is a binary operation on \mathbb{N}_{n}, write out the Cayley table for $\left(\mathbb{N}_{n}, \cdot{ }_{n}\right)$.
c. Is $\left(\mathbb{N}_{n}, \cdot{ }_{n}\right)$ a group for each of the n you used in part \mathbf{b} ?

