P

Intro to Abstract Math Fall 2009

Homework 24 Due November 9

Exercise 69. Write out the Cayley tables for $(\mathbb{Z}_2, +_2)$, $(\mathbb{Z}_3, +_3)$ and $(\mathbb{Z}_4, +_4)$.

Exercise 70. Let $n \in \mathbb{N}$, $n \geq 2$.

- **a.** Let $a \in \mathbb{Z}_n$. Show that if $x \cdot_n a = x$ for all $x \in \mathbb{Z}_n$, then a = 1.
- **b.** Show that (\mathbb{Z}_n, \cdot_n) is *never* a group.

Exercise 71. Let $n \in \mathbb{N}$ and $n \ge 2$. Let $\mathbb{N}_n = \mathbb{Z}_n - \{0\}$.

- **a.** For n = 2, 3, 4, 5, 6, determine if \cdot_n is a binary operation on \mathbb{N}_n .
- **b.** For the *n* from part **a** for which \cdot_n is a binary operation on \mathbb{N}_n , write out the Cayley table for (\mathbb{N}_n, \cdot_n) .
- **c.** Is (\mathbb{N}_n, \cdot_n) a group for each of the *n* you used in part **b**?