

INTRO TO ABSTRACT MATH FALL 2009

Homework 27 Due November 23

Exercise 78. For each pair (a, b), find gcd(a, b) and express it in the form ra + sb with $r, s \in \mathbb{Z}$.

a. a = 11, b = 3
b. a = 42, b = 77
c. a = 420, b = 288

Exercise 79. Let $n \in \mathbb{N}$, $n \geq 2$ and let $a \in \mathbb{Z}_n$. Prove that if gcd(a, n) = 1 then there is a $b \in \mathbb{Z}_n$ so that $a \cdot_n b = 1$. [*Hint:* If gcd(a, n) = 1 then there are integers r, s so that ra + sn = 1.]

Exercise 80. For $n \in \mathbb{N}$, $n \ge 2$, let

 $U(n) = \{a \in \mathbb{Z}_n \mid \gcd(a, n) = 1\}.$

a. Use the result of the previous exercise to show that $(U(n), \cdot_n)$ is a group.

b. Determine whether or not U(n) is cyclic for n = 8, 9, 10, 11, 12.