Intro to Abstract Math
Homework 27
Fall 2009

Exercise 78. For each pair (a, b), find $\operatorname{gcd}(a, b)$ and express it in the form $r a+s b$ with $r, s \in \mathbb{Z}$.
a. $a=11, b=3$
b. $a=42, b=77$
c. $a=420, b=288$

Exercise 79. Let $n \in \mathbb{N}, n \geq 2$ and let $a \in \mathbb{Z}_{n}$. Prove that if $\operatorname{gcd}(a, n)=1$ then there is a $b \in \mathbb{Z}_{n}$ so that $a{ }_{n} b=1$. [Hint: If $\operatorname{gcd}(a, n)=1$ then there are integers r, s so that $r a+s n=1$.]

Exercise 80. For $n \in \mathbb{N}, n \geq 2$, let

$$
U(n)=\left\{a \in \mathbb{Z}_{n} \mid \operatorname{gcd}(a, n)=1\right\} .
$$

a. Use the result of the previous exercise to show that $\left(U(n),{ }_{n}\right)$ is a group.
b. Determine whether or not $U(n)$ is cyclic for $n=8,9,10,11,12$.

