

Intro to Abstract Math Fall 2009

HOMEWORK 28 DUE NOVEMBER 30

Exercise 81. Let G be a group and $a \in G$. Suppose |a| = n. Prove that if $k \in \mathbb{N}$ and k|n then $|a^k| = n/k$.

Exercise 82. Let G be a group, $a \in G$ and |a| = n. Recall that for any $k \in \mathbb{Z}$, $\langle a^k \rangle = \langle a^{\gcd(k,n)} \rangle$. Use this to prove that $\langle a^i \rangle = \langle a^j \rangle$ if and only if $\gcd(i,n) = \gcd(j,n)$.

Exercise 83. In the last homework we saw that U(25) is a group under multiplication modulo 25.

- **a.** List the elements of U(25).
- **b.** Given that $U(25) = \langle 2 \rangle$, find all the generators of U(25).