Homework #11 Solutions

p 166, #18 We start by counting the elements in D,, and D, respectively, of order 2. If
x € D, and |z| = 2 then either x is a flip or z is a rotation of order 2. The subgroup of
rotations in D,, is cyclic of order m, and since m is even there is exactly ¢(2) = 1 rotation
of order 2. Therefore, D,, contains exactly m + 1 elements of order 2. On the other hand,
y € D,, can have order 2 only if y is a flip, since the rotations in D,, have order dividing n,
which is odd. Therefore there are exactly n elements in D,, of order 2.

We are now in a position to count the elements of order 2 in D,, & D,,. Suppose (z,y) €
D,, ® D,, and |(z,y)| = 2. Since |(z,y)| = lem(|z|, |y|), it must be that either |z| = 2 and
lyl = 1,2 or |z| =1 and |y| = 2. In the first case, the preceding paragraph shows that there
are m + 1 choices for z and n + 1 choices for y, giving a total of (m 4 1)(n + 1) pairs. In the
second case x = e and there are n choices for y, yielding another n pairs. Thus, the total
number of pairs with order 2 is

(m—+1)(n+1)+n.

p 166, #28 It is not hard to show that Zis ® Z4 @ Z15 has no element of order 9, so we
won’t be able to find a cyclic subgroup of order 9. We therefore look for the next easiest
type of subgroup, namely one of the form H ® K & J where H < Zy5, K < Z4 and J < Zy5.
The order of such a subgroup is |H|-|K]| - |J|. If this is to equal 9, Lagrange’s theorem tells
us that we need |H| = 3, |K| =1 and |J| = 3. Since Zs, Z4 and Zy; are all cyclic, they have
unique subgroups of these orders. That is, we must take H = (4), K = {0} and J = (5), so
our subgroup is
(4) @ {0} @ (5)

p 167, #40 According to Corollary 1 of Theorem 8.2 we have

Lo @ Lo @ L = Zop® Ls® Lo D Ls
Ly @ Lo @ L
Lo @ ZLg D L.
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p 167, #44 We have

1 = 8-2mod 15
8- 9(2,3)
= ¢(8-2mod 3,83 mod 5)
¢(1,4)



which shows that (1,4) maps to 1.

p 167, #50 Since 165 = 3 -5 - 11, the Corollary to Theorem 8.3 gives
U(165) =UB) e UB) e U(11) = Zy & Zy & Zyo.

p 167, #52 We begin by observing that

If (z,y) € Zs ® Z4 has order 4 then, since |(x,y)| = lem(|z|, |y|), x is free and y must have
order 4. Since Z, has ¢(4) = 2 elements of order 4, it follows that Zs ® Z4, and hence
Aut(Zsyg), has 4 elements of order 4. On the other hand, since 4 - (x,y) = (0,0) for every
(x,y) € Zy ® Z4, Lagrange’s theorem tells us that the possible orders of elements are 1, 2 or
4. Having counted the order 4 elements, and knowing that only the identity has order 1, we
conclude that there must be exactly 3 elements of order 2.

p 168, #58 By the Corollary to Theorem 8.3:
U(144) =U(2*-3) 2 URHY D U(3*) X Zy @ 7y D Zg
U(140) =U(2*-5- )2 U)o UGB) @ U(T) X Zy ® Zy ® Zs
proving that U(144) = U(140).

p 191, #4 H is not normal in GL(2,R) since
1
1

( eH (1?)eauzm

mar = (] 2)(3 DA )=(5 )

which does not belong to H.

and

p 191, #10 Let G = (a) be a cyclic group and let H <G. If gH € G/H then g = a™ for
some n € 7Z so that

gH =ad"H = (aH)" € (aH).
This shows that G/H = (aH) and is hence cyclic.

p 191, #12 Let G be an abelian group and let H < G. For any aH,bH € G/H we have,
since (G is abelian,
(aH)(bH) = (ab)H = (ba)H = (bH)(aH)



which proves that G/H is abelian as well.

p 191, #14 Since (8) = {0,8,16} and

2.-14mod24 = 4
3-14mod24 = 18
4-14mod24 = 8

we see that the coset 14 + (8) has order 4 in Zo,/(8).

p 192, #18 Since 15 has order 4 in Zg,, Lagrange’s theorem tells us that
[(15)] 4

|Zeo/(15)| = [Zeo : (15)]

p 192, #22 We start by noting that ((2,2)) = {(2m,2m)|m € Z} so that n - (1,0) =
(n,0) & ((2,2)) for every n € Z*. From this it follows that (1,0)+ ((2,2)) must have infinite
order in (Z ® Z)/((2,2)) and hence that this group has infinite order. If (Z & Z)/{(2,2))
were cyclic, it would have to be isomorphic to Z, the only infinite cyclic group. However, Z
has no elements of order 2, whereas (1,1) + ((2,2)) is an element of (Z & Z)/((2,2)) with
order 2. Consequently, (Z & Z)/{(2,2)) is not isomorphic to Z and so is not cyclic.

p 192, #26 Using the Cayley table for G on page 90 we find that the 4 cosets of H are

H = {ed*}
aH = {a,a’}
bH = {b,ba?)

baH = {ba,ba’}.
Moreover, according to the same Cayley table we have
(aH)? = o*H=H
(bH)? = VH=d’H=H

so that G/H has at least 2 distinct elements of order 2. Since Z, has only a single element
of order 2, it must be that G/H = Zy @ Z,.

p 192, #28 The four cosets in G/H are

H = {(0,0),(2,0),(0,2),(2,2)}
(1,1)+ H {(1,1),(3,1),(1,3),(3,3)}
(L2)+H = {(1,2),(3,2),(1,0),(3,0)}
2, 1)+ H {(2,1),(0,1),(2,3),(0,3)}



which all have order 2. Therefore G/H = Zy @ Zs. The cosets in G/K are

K = {(070)7(172)7<2’O>7(372)}
(L) +K = {(1,1),(2,3),(3,1),(0,3)}
(1,L3)+ K = {(1,3),(2,1),(3,3),(0,1)}
(2,2) + K = {(2,2),(3,0),(0,2),(1,0)}

and since (1,1) + K clearly has order 4, it must be that G/K = Zy.

p 193, #42 We prove only the generalization, which is the following.

Proposition 1. Let G be a group and let n € Z*. If G has a unique subgroup of order n
then that subgroup is normal in G.

Proof. Let H be the unique subgroup of G of order n. For any xz € G, xHx™! is also a
subgroup of G with order n. Therefore it must be that tHx~' = H. Since x € G was
arbitrary, this proves that H is normal in G. O]

p 193, #44 We prove only the generalization, which is the following.
Proposition 2. If G is a finite group then |G : Z(G)] is 1 or is composite.

Proof. Assume, for the sake of contradiction, that [G : Z(G)] is prime. Then G/Z(G) is a
group of prime order and is therefore cyclic. Theorem 9.3 then implies that G is abelian,
which means that G = Z(G) and so [G : Z(G)] = 1, which is a contradiction. O

p 193, #46 Let aH € G/H. If aH has finite order then there is an n € Z* so that
a"H = (aH)" = H,
i.e. a® € H. But every element of H has finite order and so there is an m € Z* so that
a"m = (a")"=e

which implies, since mn > 1, that a has finite order. That is, a € H so that aH is the trivial
coset H. We have therefore shown that the only element of G/H with finite order is the
identity, which is equivalent to the desired conclusion.

p 195, #70 We begin with the following general result.
Proposition 3. Let G be a group and H < G. For any g € G the set
K=|JgH
i€z

1s a subgroup of G.



Proof 1. We use the one-step subgroup test. We begin by noting that K # ) since H C K
and H # (. If 2,y € K then there exist hy,hy € H and 4,j € Z so that x = g'h; and
y = ¢'hy. Since H<G, g7H = Hg™7, and so hih, 'g~7 = g7hs for some hs € H. Thus

vy =g'hahy g =g'ghs =g hy € K
proving that K passes the one-step subgroup test. O]

Proof 2. Let v : G — G/H be the natural homomorphism. Since the kernel of v is H and
v(g') = ¢'H = (gH)', v ((9H)*) = ¢'H by Theorem 10.1. Thus

KE=Jd¢H={Jrv " ((gH)) =~" (U{(gﬂ)i}> =7 ({gH))

i€z i€z i€z
which shows that K is a subgroup of G by Theorem 10.2. m

The conclusion of the problem now follows easily. Since gH has order 3, the cosets H,
gH and ¢?H are distinct, and any other coset of the form ¢'H is one of these. Therefore

JsdH=HUgHUH

1EL

and the latter set contains exactly 12 elements since |H| = 4. The proposition tells us this
set is a subgroup of GG, so we’re finished.

p 210, #6 Let f,g € G. The linearity of differentiation assures us that [ f + [ ¢ is an
antiderivative of f + g, i.e.

(oo fo () (1) -1

Furthermore, since ([ £)(0) = ([ ¢)(0) = 0 we have

(/H/g)m):(/f) <0)+(/9) (0)=0+0=0

so that [ f 4 [ ¢ passes through the point (0,0). It follows from the definition of [ that
[+ [g=[(f+g), proving that the map f — [ f is indeed a homomorphism.

If we require that the antiderivative [ f pass through any point (a,b) with b # 0 then the
map is never a homomorphism. To see this, note that for any f € G we have

(i)
([r+ [r)@=([s)@+([r)@=mro=([u+n)w

demonstrating that [(f+ f)# [ f+ [ f.



p 211, #10 Let z,y € G. To show that ¢(xy) = ¢(z)p(y) we consider 4 possible cases.
Case 1: x and y are both rotations. Then xy is also a rotation and so

P(x)p(y) =1-1=1= ¢(ry).

Case 2: x is a rotation and y is a reflection. Then zy is also a reflection and so

p(x)p(y) =1 —1=—1=p(zy).

Case 3: x is a reflection and y is a rotation. Then, as above, xy is a reflection and so

p(r)p(y) = —1-1=1= p(zy).

Case 4: x and y are both reflections. Then zy is a rotation and so

d(x)p(y) = —1- =1 =1= ¢(zy).

Since ¢(zy) = ¢(x)p(y) in each case, we conclude that ¢ is a homomorphism.

It’s clear from the definition of ¢ that ker ¢ consists of all of the rotations in G, i.e.
ker ¢ = G'N (Rs60/n), where G < D,,. Note that this proves that for any subgroup G of a
dihedral group, the set of rotations in G is a normal subgroup of G.

p 211, #14 This function is not a homomorphism because it fails to preserve the respective
group operations. To be specific, if we denote the function by ¢, we have

$(6+6) = ¢(0) =0

and
®(6) + ¢(6) = 18 + 18 mod 10 = 6.

That is, ¢(6 4+ 6) # ¢(6) + ¢(6).

p 212, #24a Since ¢(7) = 6 and 43 - 6 mod 50 = 1 we have
&(1) = ¢(43 - 7) = 436(7) = 43 - 6 mod 15 = 3

from which it follows that

6(z) = 26(1) = 3.

p 212, #36 The whole point here is that every element of Z & Z can be written as a Z-
linear combination of (3,2) and (2,1). This is because, given any (u,v) € Z®Z, the equation
x(3,2) +y(2,1) = (u,v) is the same as the vector equation

(2)(0)- )



which is the same as the matrix equation

3 2 r\ _ [ u
2 1 y ) \v
and the latter has the solution

r\ _ (3 2 1w (-1 2 uw\ o —u+2w
y ) 21 v ) 2 -3 v )\ 2u-—3v
which is a vector with integer entries since u, v € Z. From this computation it follows that

o((u,v)) = ¢(2(3,2) + y(2,1)) = 2¢(3,2) + yp(2,1) = (—u + 2v)a + (2u — 3v)b.

In particular
®(4,4) = (=4 +8)a+ (8 — 12)b = 4a — 4b.

p 213, #52 We will use the one-step subgroup test to prove that H is indeed a subgroup
of G. First of all, H # () since a(e) = e = [(e) implies that e € H. Now, if a,b € H then

a(ab™) = a(a)a(b™") = a(a)a(b)™ = B(a)B() ™" = B(a)B(b™") = Blab~")
implying that ab~' € H. Therefore H is a subgroup of G.



