Homework #11 Solutions

p 166, #18 We start by counting the elements in D_m and D_n , respectively, of order 2. If $x \in D_m$ and $|x| = 2$ then either x is a flip or x is a rotation of order 2. The subgroup of rotations in D_m is cyclic of order m, and since m is even there is exactly $\phi(2) = 1$ rotation of order 2. Therefore, D_m contains exactly $m + 1$ elements of order 2. On the other hand, $y \in D_n$ can have order 2 only if y is a flip, since the rotations in D_n have order dividing n, which is odd. Therefore there are exactly *n* elements in D_n of order 2.

We are now in a position to count the elements of order 2 in $D_m \oplus D_n$. Suppose $(x, y) \in$ $D_m \oplus D_n$ and $|(x, y)| = 2$. Since $|(x, y)| = \text{lcm}(|x|, |y|)$, it must be that either $|x| = 2$ and $|y| = 1, 2$ or $|x| = 1$ and $|y| = 2$. In the first case, the preceding paragraph shows that there are $m+1$ choices for x and $n+1$ choices for y, giving a total of $(m+1)(n+1)$ pairs. In the second case $x = e$ and there are *n* choices for *y*, yielding another *n* pairs. Thus, the total number of pairs with order 2 is

$$
(m+1)(n+1)+n.
$$

p 166, #28 It is not hard to show that $\mathbb{Z}_{12} \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_{15}$ has no element of order 9, so we won't be able to find a cyclic subgroup of order 9. We therefore look for the next easiest type of subgroup, namely one of the form $H \oplus K \oplus J$ where $H \leq \mathbb{Z}_{12}$, $K \leq \mathbb{Z}_4$ and $J \leq \mathbb{Z}_{15}$. The order of such a subgroup is $|H| \cdot |K| \cdot |J|$. If this is to equal 9, Lagrange's theorem tells us that we need $|H| = 3$, $|K| = 1$ and $|J| = 3$. Since \mathbb{Z}_{12} , \mathbb{Z}_4 and \mathbb{Z}_{15} are all cyclic, they have unique subgroups of these orders. That is, we must take $H = \langle 4 \rangle$, $K = \{0\}$ and $J = \langle 5 \rangle$, so our subgroup is

$$
\langle 4 \rangle \oplus \{0\} \oplus \langle 5 \rangle
$$

p 167, #40 According to Corollary 1 of Theorem 8.2 we have

$$
\mathbb{Z}_{10} \oplus \mathbb{Z}_{12} \oplus \mathbb{Z}_6 \cong \mathbb{Z}_2 \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_{12} \oplus \mathbb{Z}_6
$$

\n
$$
\cong \mathbb{Z}_2 \oplus \mathbb{Z}_{60} \oplus \mathbb{Z}_6
$$

\n
$$
\cong \mathbb{Z}_{60} \oplus \mathbb{Z}_6 \oplus \mathbb{Z}_2.
$$

p 167, $\#44$ We have

1 = 8 · 2 mod 15
\n= 8 ·
$$
\phi(2,3)
$$

\n= $\phi(8 \cdot 2 \mod 3, 8 \cdot 3 \mod 5)$
\n= $\phi(1, 4)$

which shows that $(1, 4)$ maps to 1.

p 167, #50 Since $165 = 3 \cdot 5 \cdot 11$, the Corollary to Theorem 8.3 gives $U(165) \cong U(3) \oplus U(5) \oplus U(11) \cong \mathbb{Z}_2 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_{10}.$

 $p\ 167, \#52$ We begin by observing that

$$
Aut(\mathbb{Z}_{20}) \cong U(20) \cong U(4) \oplus U(5) \cong \mathbb{Z}_2 \oplus \mathbb{Z}_4.
$$

If $(x, y) \in \mathbb{Z}_2 \oplus \mathbb{Z}_4$ has order 4 then, since $|(x, y)| = \text{lcm}(|x|, |y|)$, x is free and y must have order 4. Since \mathbb{Z}_4 has $\phi(4) = 2$ elements of order 4, it follows that $\mathbb{Z}_2 \oplus \mathbb{Z}_4$, and hence Aut (\mathbb{Z}_{20}) , has 4 elements of order 4. On the other hand, since $4 \cdot (x, y) = (0, 0)$ for every $(x, y) \in \mathbb{Z}_2 \oplus \mathbb{Z}_4$, Lagrange's theorem tells us that the possible orders of elements are 1, 2 or 4. Having counted the order 4 elements, and knowing that only the identity has order 1, we conclude that there must be exactly 3 elements of order 2.

p 168, #58 By the Corollary to Theorem 8.3:

$$
U(144) = U(24 \cdot 32) \cong U(24) \oplus U(32) \cong \mathbb{Z}_2 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_6
$$

$$
U(140) = U(22 \cdot 5 \cdot 7) \cong U(22) \oplus U(5) \oplus U(7) \cong \mathbb{Z}_2 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_6
$$

proving that $U(144) \cong U(140)$.

p 191, $\#4$ H is not normal in $GL(2,\mathbb{R})$ since

$$
A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \in H \text{ , } B = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \in GL(2, \mathbb{R})
$$

and

$$
BAB^{-1} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 2 \end{pmatrix}
$$

which does not belong to H .

p 191, $\#$ 10 Let $G = \langle a \rangle$ be a cyclic group and let $H \triangleleft G$. If $gH \in G/H$ then $g = a^n$ for some $n \in \mathbb{Z}$ so that

$$
gH = a^n H = (aH)^n \in \langle aH \rangle.
$$

This shows that $G/H = \langle aH \rangle$ and is hence cyclic.

p 191, #12 Let G be an abelian group and let $H \triangleleft G$. For any $aH, bH \in G/H$ we have, since G is abelian,

$$
(aH)(bH) = (ab)H = (ba)H = (bH)(aH)
$$

which proves that G/H is abelian as well.

p 191, #14 Since $\langle 8 \rangle = \{0, 8, 16\}$ and

$$
2 \cdot 14 \mod 24 = 4
$$

$$
3 \cdot 14 \mod 24 = 18
$$

$$
4 \cdot 14 \mod 24 = 8
$$

we see that the coset $14 + \langle 8 \rangle$ has order 4 in $\mathbb{Z}_{24}/\langle 8 \rangle$.

p 192, #18 Since 15 has order 4 in \mathbb{Z}_{60} , Lagrange's theorem tells us that

$$
|\mathbb{Z}_{60}/\langle 15 \rangle| = [\mathbb{Z}_{60} : \langle 15 \rangle] = \frac{|\mathbb{Z}_{60}|}{|\langle 15 \rangle|} = \frac{60}{4} = 15.
$$

p 192, #22 We start by noting that $\langle (2, 2) \rangle = \{ (2m, 2m) | m \in \mathbb{Z} \}$ so that $n \cdot (1, 0) =$ $(n, 0) \notin \langle (2, 2) \rangle$ for every $n \in \mathbb{Z}^+$. From this it follows that $(1, 0) + \langle (2, 2) \rangle$ must have infinite order in $(\mathbb{Z} \oplus \mathbb{Z})/\langle (2, 2) \rangle$ and hence that this group has infinite order. If $(\mathbb{Z} \oplus \mathbb{Z})/\langle (2, 2) \rangle$ were cyclic, it would have to be isomorphic to \mathbb{Z} , the only infinite cyclic group. However, \mathbb{Z} has no elements of order 2, whereas $(1, 1) + \langle (2, 2) \rangle$ is an element of $(\mathbb{Z} \oplus \mathbb{Z})/\langle (2, 2) \rangle$ with order 2. Consequently, $(\mathbb{Z} \oplus \mathbb{Z})/\langle (2, 2) \rangle$ is not isomorphic to $\mathbb Z$ and so is not cyclic.

p 192, $\#26$ Using the Cayley table for G on page 90 we find that the 4 cosets of H are

$$
H = \{e, a^2\} \n aH = \{a, a^3\} \n bH = \{b, ba^2\} \n baH = \{ba, ba^3\}.
$$

Moreover, according to the same Cayley table we have

$$
(aH)2 = a2H = H
$$

$$
(bH)2 = b2H = a2H = H
$$

so that G/H has at least 2 distinct elements of order 2. Since \mathbb{Z}_4 has only a single element of order 2, it must be that $G/H \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2$.

p 192, #28 The four cosets in G/H are

$$
H = \{ (0,0), (2,0), (0,2), (2,2) \}
$$

(1,1) + H = \{ (1,1), (3,1), (1,3), (3,3) \}
(1,2) + H = \{ (1,2), (3,2), (1,0), (3,0) \}
(2,1) + H = \{ (2,1), (0,1), (2,3), (0,3) \}

which all have order 2. Therefore $G/H \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2$. The cosets in G/K are

$$
K = \{(0,0), (1,2), (2,0), (3,2)\}
$$

\n
$$
(1,1) + K = \{(1,1), (2,3), (3,1), (0,3)\}
$$

\n
$$
(1,3) + K = \{(1,3), (2,1), (3,3), (0,1)\}
$$

\n
$$
(2,2) + K = \{(2,2), (3,0), (0,2), (1,0)\}
$$

and since $(1, 1) + K$ clearly has order 4, it must be that $G/K \cong \mathbb{Z}_4$.

p 193, #42 We prove only the generalization, which is the following.

Proposition 1. Let G be a group and let $n \in \mathbb{Z}^+$. If G has a unique subgroup of order n then that subgroup is normal in G.

Proof. Let H be the unique subgroup of G of order n. For any $x \in G$, xHx^{-1} is also a subgroup of G with order n. Therefore it must be that $xHx^{-1} = H$. Since $x \in G$ was arbitrary, this proves that H is normal in G . \Box

p 193, #44 We prove only the generalization, which is the following.

Proposition 2. If G is a finite group then $[G:Z(G)]$ is 1 or is composite.

Proof. Assume, for the sake of contradiction, that $[G:Z(G)]$ is prime. Then $G/Z(G)$ is a group of prime order and is therefore cyclic. Theorem 9.3 then implies that G is abelian, which means that $G = Z(G)$ and so $[G : Z(G)] = 1$, which is a contradiction. \Box

p 193, $\#46$ Let $aH \in G/H$. If aH has finite order then there is an $n \in \mathbb{Z}^+$ so that

$$
a^n H = (aH)^n = H,
$$

i.e. $a^n \in H$. But every element of H has finite order and so there is an $m \in \mathbb{Z}^+$ so that

$$
a^{nm} = (a^n)^m = e
$$

which implies, since $mn \geq 1$, that a has finite order. That is, $a \in H$ so that aH is the trivial coset H. We have therefore shown that the only element of G/H with finite order is the identity, which is equivalent to the desired conclusion.

p 195, #70 We begin with the following general result.

Proposition 3. Let G be a group and $H \triangleleft G$. For any $q \in G$ the set

$$
K = \bigcup_{i \in \mathbb{Z}} g^i H
$$

is a subgroup of G.

Proof 1. We use the one-step subgroup test. We begin by noting that $K \neq \emptyset$ since $H \subset K$ and $H \neq \emptyset$. If $x, y \in K$ then there exist $h_1, h_2 \in H$ and $i, j \in \mathbb{Z}$ so that $x = g^i h_1$ and $y = g^j h_2$. Since $H \triangleleft G$, $g^{-j}H = Hg^{-j}$, and so $h_1 h_2^{-1} g^{-j} = g^{-j} h_3$ for some $h_3 \in H$. Thus

$$
xy^{-1} = g^i h_1 h_2^{-1} g^{-j} = g^i g^{-j} h_3 = g^{i-j} h_3 \in K
$$

proving that K passes the one-step subgroup test.

Proof 2. Let γ : $G \to G/H$ be the natural homomorphism. Since the kernel of γ is H and $\gamma(g^i) = g^i H = (gH)^i$, $\gamma^{-1}((gH)^i) = g^i H$ by Theorem 10.1. Thus

$$
K = \bigcup_{i \in \mathbb{Z}} g^i H = \bigcup_{i \in \mathbb{Z}} \gamma^{-1}((gH)^i) = \gamma^{-1} \left(\bigcup_{i \in \mathbb{Z}} \{ (gH)^i \} \right) = \gamma^{-1}(\langle gH \rangle)
$$

which shows that K is a subgroup of G by Theorem 10.2.

The conclusion of the problem now follows easily. Since qH has order 3, the cosets H, gH and g^2H are distinct, and any other coset of the form g^iH is one of these. Therefore

$$
\bigcup_{i \in \mathbb{Z}} g^i H = H \cup gH \cup g^2 H
$$

and the latter set contains exactly 12 elements since $|H| = 4$. The proposition tells us this set is a subgroup of G , so we're finished.

p 210, #6 Let $f, g \in G$. The linearity of differentiation assures us that $\int f + \int g$ is an antiderivative of $f + g$, i.e.

$$
\left(\int f + \int g\right)' = \left(\int f\right)' + \left(\int g\right)' = f + g.
$$

Furthermore, since $(\int f)(0) = (\int g)(0) = 0$ we have

$$
\left(\int f + \int g\right)(0) = \left(\int f\right)(0) + \left(\int g\right)(0) = 0 + 0 = 0
$$

so that $\int f + \int g$ passes through the point $(0, 0)$. It follows from the definition of \int that $\int f + \int g = \int (f + g)$, proving that the map $f \mapsto \int f$ is indeed a homomorphism.

If we require that the antiderivative $\int f$ pass through any point (a, b) with $b \neq 0$ then the map is never a homomorphism. To see this, note that for any $f \in G$ we have

$$
\left(\int f\right)(a) = b
$$

and

$$
\left(\int f + \int f\right)(a) = \left(\int f\right)(a) + \left(\int f\right)(a) = 2b \neq b = \left(\int (f + f)\right)(a)
$$

demonstrating that $\int (f + f) \neq \int f + \int f$.

 \Box

 \Box

p 211, $\#10$ Let $x, y \in G$. To show that $\phi(xy) = \phi(x)\phi(y)$ we consider 4 possible cases. **Case 1:** x and y are both rotations. Then xy is also a rotation and so

$$
\phi(x)\phi(y) = 1 \cdot 1 = 1 = \phi(xy).
$$

Case 2: x is a rotation and y is a reflection. Then xy is also a reflection and so

$$
\phi(x)\phi(y) = 1 \cdot -1 = -1 = \phi(xy).
$$

Case 3: x is a reflection and y is a rotation. Then, as above, xy is a reflection and so

$$
\phi(x)\phi(y) = -1 \cdot 1 = 1 = \phi(xy).
$$

Case 4: x and y are both reflections. Then xy is a rotation and so

$$
\phi(x)\phi(y) = -1 \cdot -1 = 1 = \phi(xy).
$$

Since $\phi(xy) = \phi(x)\phi(y)$ in each case, we conclude that ϕ is a homomorphism.

It's clear from the definition of ϕ that ker ϕ consists of all of the rotations in G, i.e. $\ker \phi = G \cap \langle R_{360/n} \rangle$, where $G \leq D_n$. Note that this proves that for any subgroup G of a dihedral group, the set of rotations in G is a normal subgroup of G .

 $p\ 211, \#14$ This function is not a homomorphism because it fails to preserve the respective group operations. To be specific, if we denote the function by ϕ , we have

$$
\phi(6+6) = \phi(0) = 0
$$

and

$$
\phi(6) + \phi(6) = 18 + 18 \text{ mod } 10 = 6.
$$

That is, $\phi(6+6) \neq \phi(6) + \phi(6)$.

p 212, #24a Since $\phi(7) = 6$ and $43 \cdot 6 \text{ mod } 50 = 1$ we have

$$
\phi(1) = \phi(43 \cdot 7) = 43\phi(7) = 43 \cdot 6 \mod 15 = 3
$$

from which it follows that

$$
\phi(x) = x\phi(1) = 3x.
$$

p 212, $\#36$ The whole point here is that every element of $\mathbb{Z} \oplus \mathbb{Z}$ can be written as a \mathbb{Z} linear combination of $(3, 2)$ and $(2, 1)$. This is because, given any $(u, v) \in \mathbb{Z} \oplus \mathbb{Z}$, the equation $x(3, 2) + y(2, 1) = (u, v)$ is the same as the vector equation

$$
x\left(\begin{array}{c}3\\2\end{array}\right)+y\left(\begin{array}{c}2\\1\end{array}\right)=\left(\begin{array}{c}u\\v\end{array}\right)
$$

which is the same as the matrix equation

$$
\left(\begin{array}{cc}3 & 2\\2 & 1\end{array}\right)\left(\begin{array}{c}x\\y\end{array}\right)=\left(\begin{array}{c}u\\v\end{array}\right)
$$

and the latter has the solution

$$
\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ 2 & 1 \end{pmatrix}^{-1} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} -1 & 2 \\ 2 & -3 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} -u + 2v \\ 2u - 3v \end{pmatrix}
$$

which is a vector with integer entries since $u, v \in \mathbb{Z}$. From this computation it follows that

$$
\phi((u,v)) = \phi(x(3,2) + y(2,1)) = x\phi(3,2) + y\phi(2,1) = (-u+2v)a + (2u-3v)b.
$$

In particular

$$
\phi(4,4) = (-4+8)a + (8-12)b = 4a - 4b.
$$

p 213, $\#52$ We will use the one-step subgroup test to prove that H is indeed a subgroup of G. First of all, $H \neq \emptyset$ since $\alpha(e) = e = \beta(e)$ implies that $e \in H$. Now, if $a, b \in H$ then

$$
\alpha(ab^{-1}) = \alpha(a)\alpha(b^{-1}) = \alpha(a)\alpha(b)^{-1} = \beta(a)\beta(b)^{-1} = \beta(a)\beta(b^{-1}) = \beta(ab^{-1})
$$

implying that $ab^{-1} \in H$. Therefore H is a subgroup of G.