
Homework #11 Solutions

p 166, #18 We start by counting the elements in Dm and Dn, respectively, of order 2. If
x ∈ Dm and |x| = 2 then either x is a flip or x is a rotation of order 2. The subgroup of
rotations in Dm is cyclic of order m, and since m is even there is exactly φ(2) = 1 rotation
of order 2. Therefore, Dm contains exactly m + 1 elements of order 2. On the other hand,
y ∈ Dn can have order 2 only if y is a flip, since the rotations in Dn have order dividing n,
which is odd. Therefore there are exactly n elements in Dn of order 2.

We are now in a position to count the elements of order 2 in Dm ⊕Dn. Suppose (x, y) ∈
Dm ⊕ Dn and |(x, y)| = 2. Since |(x, y)| = lcm(|x|, |y|), it must be that either |x| = 2 and
|y| = 1, 2 or |x| = 1 and |y| = 2. In the first case, the preceding paragraph shows that there
are m + 1 choices for x and n + 1 choices for y, giving a total of (m + 1)(n + 1) pairs. In the
second case x = e and there are n choices for y, yielding another n pairs. Thus, the total
number of pairs with order 2 is

(m + 1)(n + 1) + n.

p 166, #28 It is not hard to show that Z12 ⊕ Z4 ⊕ Z15 has no element of order 9, so we
won’t be able to find a cyclic subgroup of order 9. We therefore look for the next easiest
type of subgroup, namely one of the form H ⊕K ⊕ J where H ≤ Z12, K ≤ Z4 and J ≤ Z15.
The order of such a subgroup is |H| · |K| · |J |. If this is to equal 9, Lagrange’s theorem tells
us that we need |H| = 3, |K| = 1 and |J | = 3. Since Z12, Z4 and Z15 are all cyclic, they have
unique subgroups of these orders. That is, we must take H = 〈4〉, K = {0} and J = 〈5〉, so
our subgroup is

〈4〉 ⊕ {0} ⊕ 〈5〉

p 167, #40 According to Corollary 1 of Theorem 8.2 we have

Z10 ⊕ Z12 ⊕ Z6
∼= Z2 ⊕ Z5 ⊕ Z12 ⊕ Z6

∼= Z2 ⊕ Z60 ⊕ Z6

∼= Z60 ⊕ Z6 ⊕ Z2.

p 167, #44 We have

1 = 8 · 2 mod 15

= 8 · φ(2, 3)

= φ(8 · 2 mod 3, 8 · 3 mod 5)

= φ(1, 4)



which shows that (1, 4) maps to 1.

p 167, #50 Since 165 = 3 · 5 · 11, the Corollary to Theorem 8.3 gives

U(165) ∼= U(3)⊕ U(5)⊕ U(11) ∼= Z2 ⊕ Z4 ⊕ Z10.

p 167, #52 We begin by observing that

Aut(Z20) ∼= U(20) ∼= U(4)⊕ U(5) ∼= Z2 ⊕ Z4.

If (x, y) ∈ Z2 ⊕ Z4 has order 4 then, since |(x, y)| = lcm(|x|, |y|), x is free and y must have
order 4. Since Z4 has φ(4) = 2 elements of order 4, it follows that Z2 ⊕ Z4, and hence
Aut(Z20), has 4 elements of order 4. On the other hand, since 4 · (x, y) = (0, 0) for every
(x, y) ∈ Z2 ⊕Z4, Lagrange’s theorem tells us that the possible orders of elements are 1, 2 or
4. Having counted the order 4 elements, and knowing that only the identity has order 1, we
conclude that there must be exactly 3 elements of order 2.

p 168, #58 By the Corollary to Theorem 8.3:

U(144) = U(24 · 32) ∼= U(24)⊕ U(32) ∼= Z2 ⊕ Z4 ⊕ Z6

U(140) = U(22 · 5 · 7) ∼= U(22)⊕ U(5)⊕ U(7) ∼= Z2 ⊕ Z4 ⊕ Z6

proving that U(144) ∼= U(140).

p 191, #4 H is not normal in GL(2, R) since

A =

(
1 1
0 1

)
∈ H , B =

(
1 0
1 1

)
∈ GL(2, R)

and

BAB−1 =

(
1 0
1 1

)(
1 1
0 1

)(
1 0
−1 1

)
=

(
0 1
−1 2

)
which does not belong to H.

p 191, #10 Let G = 〈a〉 be a cyclic group and let H / G. If gH ∈ G/H then g = an for
some n ∈ Z so that

gH = anH = (aH)n ∈ 〈aH〉.
This shows that G/H = 〈aH〉 and is hence cyclic.

p 191, #12 Let G be an abelian group and let H / G. For any aH, bH ∈ G/H we have,
since G is abelian,

(aH)(bH) = (ab)H = (ba)H = (bH)(aH)



which proves that G/H is abelian as well.

p 191, #14 Since 〈8〉 = {0, 8, 16} and

2 · 14 mod 24 = 4

3 · 14 mod 24 = 18

4 · 14 mod 24 = 8

we see that the coset 14 + 〈8〉 has order 4 in Z24/〈8〉.

p 192, #18 Since 15 has order 4 in Z60, Lagrange’s theorem tells us that

|Z60/〈15〉| = [Z60 : 〈15〉] =
|Z60|
|〈15〉|

=
60

4
= 15.

p 192, #22 We start by noting that 〈(2, 2)〉 = {(2m, 2m) |m ∈ Z} so that n · (1, 0) =
(n, 0) 6∈ 〈(2, 2)〉 for every n ∈ Z+. From this it follows that (1, 0)+ 〈(2, 2)〉 must have infinite
order in (Z ⊕ Z)/〈(2, 2)〉 and hence that this group has infinite order. If (Z ⊕ Z)/〈(2, 2)〉
were cyclic, it would have to be isomorphic to Z, the only infinite cyclic group. However, Z
has no elements of order 2, whereas (1, 1) + 〈(2, 2)〉 is an element of (Z ⊕ Z)/〈(2, 2)〉 with
order 2. Consequently, (Z⊕ Z)/〈(2, 2)〉 is not isomorphic to Z and so is not cyclic.

p 192, #26 Using the Cayley table for G on page 90 we find that the 4 cosets of H are

H = {e, a2}
aH = {a, a3}
bH = {b, ba2}

baH = {ba, ba3}.

Moreover, according to the same Cayley table we have

(aH)2 = a2H = H

(bH)2 = b2H = a2H = H

so that G/H has at least 2 distinct elements of order 2. Since Z4 has only a single element
of order 2, it must be that G/H ∼= Z2 ⊕ Z2.

p 192, #28 The four cosets in G/H are

H = {(0, 0), (2, 0), (0, 2), (2, 2)}
(1, 1) + H = {(1, 1), (3, 1), (1, 3), (3, 3)}
(1, 2) + H = {(1, 2), (3, 2), (1, 0), (3, 0)}
(2, 1) + H = {(2, 1), (0, 1), (2, 3), (0, 3)}



which all have order 2. Therefore G/H ∼= Z2 ⊕ Z2. The cosets in G/K are

K = {(0, 0), (1, 2), (2, 0), (3, 2)}
(1, 1) + K = {(1, 1), (2, 3), (3, 1), (0, 3)}
(1, 3) + K = {(1, 3), (2, 1), (3, 3), (0, 1)}
(2, 2) + K = {(2, 2), (3, 0), (0, 2), (1, 0)}

and since (1, 1) + K clearly has order 4, it must be that G/K ∼= Z4.

p 193, #42 We prove only the generalization, which is the following.

Proposition 1. Let G be a group and let n ∈ Z+. If G has a unique subgroup of order n
then that subgroup is normal in G.

Proof. Let H be the unique subgroup of G of order n. For any x ∈ G, xHx−1 is also a
subgroup of G with order n. Therefore it must be that xHx−1 = H. Since x ∈ G was
arbitrary, this proves that H is normal in G.

p 193, #44 We prove only the generalization, which is the following.

Proposition 2. If G is a finite group then [G : Z(G)] is 1 or is composite.

Proof. Assume, for the sake of contradiction, that [G : Z(G)] is prime. Then G/Z(G) is a
group of prime order and is therefore cyclic. Theorem 9.3 then implies that G is abelian,
which means that G = Z(G) and so [G : Z(G)] = 1, which is a contradiction.

p 193, #46 Let aH ∈ G/H. If aH has finite order then there is an n ∈ Z+ so that

anH = (aH)n = H,

i.e. an ∈ H. But every element of H has finite order and so there is an m ∈ Z+ so that

anm = (an)m = e

which implies, since mn ≥ 1, that a has finite order. That is, a ∈ H so that aH is the trivial
coset H. We have therefore shown that the only element of G/H with finite order is the
identity, which is equivalent to the desired conclusion.

p 195, #70 We begin with the following general result.

Proposition 3. Let G be a group and H / G. For any g ∈ G the set

K =
⋃
i∈Z

giH

is a subgroup of G.



Proof 1. We use the one-step subgroup test. We begin by noting that K 6= ∅ since H ⊂ K
and H 6= ∅. If x, y ∈ K then there exist h1, h2 ∈ H and i, j ∈ Z so that x = gih1 and
y = gjh2. Since H / G, g−jH = Hg−j, and so h1h

−1
2 g−j = g−jh3 for some h3 ∈ H. Thus

xy−1 = gih1h
−1
2 g−j = gig−jh3 = gi−jh3 ∈ K

proving that K passes the one-step subgroup test.

Proof 2. Let γ : G → G/H be the natural homomorphism. Since the kernel of γ is H and
γ(gi) = giH = (gH)i, γ−1((gH)i) = giH by Theorem 10.1. Thus

K =
⋃
i∈Z

giH =
⋃
i∈Z

γ−1((gH)i) = γ−1

(⋃
i∈Z

{(gH)i}

)
= γ−1(〈gH〉)

which shows that K is a subgroup of G by Theorem 10.2.

The conclusion of the problem now follows easily. Since gH has order 3, the cosets H,
gH and g2H are distinct, and any other coset of the form giH is one of these. Therefore⋃

i∈Z

giH = H ∪ gH ∪ g2H

and the latter set contains exactly 12 elements since |H| = 4. The proposition tells us this
set is a subgroup of G, so we’re finished.

p 210, #6 Let f, g ∈ G. The linearity of differentiation assures us that
∫

f +
∫

g is an
antiderivative of f + g, i.e.(∫

f +

∫
g

)′

=

(∫
f

)′

+

(∫
g

)′

= f + g.

Furthermore, since (
∫

f)(0) = (
∫

g)(0) = 0 we have(∫
f +

∫
g

)
(0) =

(∫
f

)
(0) +

(∫
g

)
(0) = 0 + 0 = 0

so that
∫

f +
∫

g passes through the point (0, 0). It follows from the definition of
∫

that∫
f +

∫
g =

∫
(f + g), proving that the map f 7→

∫
f is indeed a homomorphism.

If we require that the antiderivative
∫

f pass through any point (a, b) with b 6= 0 then the
map is never a homomorphism. To see this, note that for any f ∈ G we have(∫

f

)
(a) = b

and (∫
f +

∫
f

)
(a) =

(∫
f

)
(a) +

(∫
f

)
(a) = 2b 6= b =

(∫
(f + f)

)
(a)

demonstrating that
∫

(f + f) 6=
∫

f +
∫

f .



p 211, #10 Let x, y ∈ G. To show that φ(xy) = φ(x)φ(y) we consider 4 possible cases.
Case 1: x and y are both rotations. Then xy is also a rotation and so

φ(x)φ(y) = 1 · 1 = 1 = φ(xy).

Case 2: x is a rotation and y is a reflection. Then xy is also a reflection and so

φ(x)φ(y) = 1 · −1 = −1 = φ(xy).

Case 3: x is a reflection and y is a rotation. Then, as above, xy is a reflection and so

φ(x)φ(y) = −1 · 1 = 1 = φ(xy).

Case 4: x and y are both reflections. Then xy is a rotation and so

φ(x)φ(y) = −1 · −1 = 1 = φ(xy).

Since φ(xy) = φ(x)φ(y) in each case, we conclude that φ is a homomorphism.
It’s clear from the definition of φ that ker φ consists of all of the rotations in G, i.e.

ker φ = G ∩ 〈R360/n〉, where G ≤ Dn. Note that this proves that for any subgroup G of a
dihedral group, the set of rotations in G is a normal subgroup of G.

p 211, #14 This function is not a homomorphism because it fails to preserve the respective
group operations. To be specific, if we denote the function by φ, we have

φ(6 + 6) = φ(0) = 0

and
φ(6) + φ(6) = 18 + 18 mod 10 = 6.

That is, φ(6 + 6) 6= φ(6) + φ(6).

p 212, #24a Since φ(7) = 6 and 43 · 6 mod 50 = 1 we have

φ(1) = φ(43 · 7) = 43φ(7) = 43 · 6 mod 15 = 3

from which it follows that
φ(x) = xφ(1) = 3x.

p 212, #36 The whole point here is that every element of Z ⊕ Z can be written as a Z-
linear combination of (3, 2) and (2, 1). This is because, given any (u, v) ∈ Z⊕Z, the equation
x(3, 2) + y(2, 1) = (u, v) is the same as the vector equation

x

(
3
2

)
+ y

(
2
1

)
=

(
u
v

)



which is the same as the matrix equation(
3 2
2 1

)(
x
y

)
=

(
u
v

)
and the latter has the solution(

x
y

)
=

(
3 2
2 1

)−1(
u
v

)
=

(
−1 2
2 −3

)(
u
v

)
=

(
−u + 2v
2u− 3v

)
which is a vector with integer entries since u, v ∈ Z. From this computation it follows that

φ((u, v)) = φ(x(3, 2) + y(2, 1)) = xφ(3, 2) + yφ(2, 1) = (−u + 2v)a + (2u− 3v)b.

In particular
φ(4, 4) = (−4 + 8)a + (8− 12)b = 4a− 4b.

p 213, #52 We will use the one-step subgroup test to prove that H is indeed a subgroup
of G. First of all, H 6= ∅ since α(e) = e = β(e) implies that e ∈ H. Now, if a, b ∈ H then

α(ab−1) = α(a)α(b−1) = α(a)α(b)−1 = β(a)β(b)−1 = β(a)β(b−1) = β(ab−1)

implying that ab−1 ∈ H. Therefore H is a subgroup of G.


