
Homework #2 Solutions

14. Suppose that G is a group with the following property: for any a, b, c ∈ G, ab = ca
implies b = c. Let x, y ∈ G. Set a = x−1, b = xy and c = yx. Then

ab = x−1(xy) = (x−1x)y = ey = y = ye = y(xx−1) = (yx)x−1 = ca.

By our hypothesis, we must have xy = b = c = yx. Since x and y were arbitrary, we conclude
that G is abelian.

16. Let G be a group and let a, b ∈ G. Using the associativity property of groups we have

(ab)(b−1a−1) = a(bb−1)a−1 = aea−1 = aa−1 = e

and
(b−1a−1)(ab) = b(aa−1)b−1 = beb−1 = bb−1 = e.

Since inverses are unique, we must have (ab)−1 = b−1a−1.
Note: In class I showed that any one-sided inverse in a group is automatically a two-sided

inverse. Therefore, any one of the above inequalities also establishes the result.

20. We will prove by induction that if G is a group, n ∈ Z+ and a1, a2, . . . , an ∈ G then
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There is nothing to prove if n = 1. So, assume that the result holds for some n ≥ 1. Let
a1, a2, . . . , an+1 ∈ G. Then, according to the previous problem and the inductive hypothesis
we have
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which shows that the result holds for n + 1 any time it holds for n ≥ 1. By induction, the
result holds for all n ≥ 1.

32. In Dn, for any flip f we have f−1 = f . Since frf = r−1 and (frf−1)n = frnf−1 (proven
in class) we have

(frf)n = frnf

and so
frn = frne = frn(ff) = (frnf)f = (frf)nf = r−nf.

a. In D4, r4 = e for any rotation r. Therefore

fr−2fr5 = fr−2fr = fr−2r−1f = fr−3f = frf = r−1 = r3 = r3f 0.

b. In D5, r5 = e for any rotation r. Therefore

r−3fr4fr−2 = r−3fr4r2f = r−3frf = r−3r−1f 2 = r−4e = r = rf 0.



c. In D6, r6 = e for any rotation r. Therefore

fr5fr−2f = fr5(fr−2f) = fr5(frf)−2 = fr5(r−1)−2 = fr7 = fr = r−1f = r5f

36. Let G be a group and let

S = {g ∈ G | g 6= e, g5 = e}.

We are asked to show that |S| is a multiple of 4. Let g ∈ S. We show first that |g| = 5.
Since g 6= e and g5 = e it is clear that 2 ≤ |g| ≤ 5. We need to show that g2, g3, g4 6= e. Let
n be any of 2,3 or 4. Then n ∈ U(5) so there is an m ∈ U(5) so that nm mod 5 = 1. That
is, nm = 5q + 1 for some q ∈ Z. If gn = e then, raising both sides to the mth power, we
obtain

e = em = gnm = g5q+1 = (g5)qg = eqg = eg = g

which is impossible. Thus g, g2, g3, g4 6= e and so |g| = 5.
We now claim that for g, h ∈ S, if hr ∈ {g, g2, g3, g4} for some 1 ≤ r ≤ 4, then

{h, h2, h3, h4} = {g, g2, g3, g4}. If hr ∈ {g, g2, g3, g4} then hr = gs for some s ∈ U(5).
If t ∈ U(5) then, since U(5) is a group, there is a u ∈ U(5) so that t = ru mod 5. If
v = sr mod 5 ∈ U(5) then

ht = hru = (hr)u = (gs)u = gsu = gv

and so ht ∈ {g, g2, g3, g4}. This proves that {h, h2, h3, h4} ⊂ {g, g2, g3, g4}. On the other
hand, since hr = gs, we have gs ∈ {h, h2, h3, h4}, so by what we have already shown it follows
that {g, g2, g3, g4} ⊂ {h, h2, h3, h4}, and so {h, h2, h3, h4} = {g, g2, g3, g4} as claimed.

We now count S. If S = ∅ then |S| = 0 and we’re done. Otherwise, choose g ∈ S.
Since |g| = 5, gi 6= e for i = 2, 3, 4, and the elements g, g2, g3, g4 are all distinct. Also
(gi)5 = (g5)i = ei = e. It follows that g, g2, g3, g4 are distinct elements of S. Moreover, the
preceding paragraph shows that two sets of the form {g, g2, g3, g4}, {h, h2, h3, h4} for g, h ∈ S
are either disjoint or equal. Therefore the sets g, g2, g3, g4 partition S into a collection of
subsets, each with size 4. It follows that the size of S is a multiple of 4.


