Homework #4 Solutions

p 67, #8. In $U(14)$ we have

and

Hence $\langle 3 \rangle = \langle 5 \rangle = \{1, 3, 5, 9, 11, 13\} = U(14).$

p 68, $\#$ 16.

Lemma 1. Let $G, x \in G$ and $k \in \mathbb{Z}$. Then

 $C(x) \leq C(x^k)$.

Proof. If $y \in C(x)$ then $x = yxy^{-1}$ so that $x^k = (yxy^{-1})^k = yx^ky^{-1}$ (the latter equality was proven in class) and hence $y \in C(x^k)$. \Box

If we apply the lemma with $x = a, k = -1$ we have

$$
C(a) \le C(a^{-1})
$$

while if we take $x = a^{-1}$ we get

$$
C(a^{-1}) \le C((a^{-1})^{-1}) = C(a).
$$

proving that $C(a) = C(a^{-1})$.

 $p 68, \# 24$. We will prove the following more general fact.

Proposition 1. Let G be a group, $a \in G$ and suppose $|a| = n$. If $(k, n) = 1$ then

$$
C(a) = C(a^k).
$$

Proof. Taking $x = a$ in the lemma of the preceding problem immediately gives

$$
C(a) \le C(a^k).
$$

We must establish the reverse inclusion. Since $(k, n) = 1$, we know that there is an $m \in \mathbb{Z}$ so that $mk \mod n = 1$. Since $|a| = n$, this means that $a^{mk} = a^1 = 1$ (proven in previous homework). The lemma above thus implies

$$
C(a^k) \le C((a^k)^m) = C(a^{mk}) = C(a)
$$

which finishes the proof.

The first part of the problem follows immediately by taking $n = 5, k = 3$.

As for the second part, consider the group D_6 . The element $R_{60} \in D_6$ (counterclockwise rotation of the hexagon by 60^o) has order 6 and $R_{60}^3 = R_{180}$. If F denotes the flip of the rotation of the hexagon by 60°) has order 6 and $R_{60}^{\circ} = R_{180}$. If F denotes the flip of the hexagon across the line $y = -x/\sqrt{3}$ then the illustration below shows that $FR_{60}F \neq R_{60}$ but $FR_{180}F = R_{180}$. Hence $F \in C(R_{180})$ but $F \notin C(R_{60})$ and so $C(R_{60}) \neq C(R_{180}) = C(R_{60}^3)$.

p 69, # 34. We simply compute the cyclic subgroups generated by each element in $U(15) =$

 \Box

 $\{1, 2, 4, 7, 8, 11, 13, 14\}$. We find

$$
\langle 1 \rangle = \{1\}
$$

\n
$$
\langle 2 \rangle = \{1, 2, 4, 8\}
$$

\n
$$
\langle 4 \rangle = \{1, 4\}
$$

\n
$$
\langle 7 \rangle = \{1, 7, 4, 13\}
$$

\n
$$
\langle 8 \rangle = \{1, 8, 4, 2\}
$$

\n
$$
\langle 11 \rangle = \{1, 11\}
$$

\n
$$
\langle 13 \rangle = \{1, 13, 4, 7\}
$$

\n
$$
\langle 14 \rangle = \{1, 14\}
$$

so that the 6 cyclic subgroups are

 $\langle 1 \rangle$ $\langle 2 \rangle = \langle 8 \rangle$ $\langle 7 \rangle$ = $\langle 13 \rangle$ $\langle 4 \rangle$ $\langle 11 \rangle$ $\langle 14 \rangle$.

p 70, # 42. It is easy to verify that as elements of $U(40)$ we have $|11| = |29| = 2$ and 11 · 29 mod 40 = 39. Since $U(40)$ is abelian, (the solution to) Exercise # 10 shows that

{1, 11, 29, 39}

is a subgroup of $U(40)$ of order 4. It is noncyclic because none of its elements have order 4.

p 82, $\#$ 2. If $|x| = n$ then Corollary 2 of Theorem 4.2 tells us that

 $\langle x \rangle = \langle x^i \rangle$

if and only if $(i, n) = 1$. Since $\langle x \rangle = \{e, x, x^2, \dots, x^{n-1}\}\$ (Theorem 4.1), we see that the set of generators of $\langle x \rangle$ is

$$
\{x^i \mid i \in U(n)\}.
$$

Since $U(6) = \{1, 5\}$, the only generators of $\langle a \rangle$ are a and a^5 . Since $U(8) = \{1, 3, 5, 7\}$, the generators of $\langle b \rangle$ are b, b^3, b^5 and b^7 . Finally, since $U(20) = \{1, 3, 7, 9, 11, 13, 17, 19\}$, the generators of $\langle c \rangle$ are $c, c^3, c^7, c^9, c^{11}, c^{13}, c^{17}$ and c^{19} .

p 82, # 8. We use Theorem 4.2, which states that if $|a| = n$ then

$$
|a^k| = \frac{n}{(n,k)}.
$$

(a) Since $(3, 15) = (6, 15) = (9, 15) = (12, 15) = 3$ we see that

$$
|a^3| = |a^6| = |a^9| = |a^{12}| = \frac{15}{3} = 5.
$$

(b) Since $(5, 15) = (10, 15) = 5$ we see that

$$
|a^5| = |a^{10}| = \frac{15}{5} = 3.
$$

(c) Since $(2, 15) = (4, 15) = (8, 15) = (14, 15) = 1$ we see that

$$
|a^2| = |a^4| = |a^8| = |a^{14}| = \frac{15}{1} = 15.
$$

p 83, # 18. Let $G = \langle a \rangle$ and suppose that G has an element of infinite order. Then G must be infinite and so a must have infinite order as well, by Theorem 4.1. Let $x \in G$ have finite order. Then $x = a^k$ for some $k \in \mathbb{Z}$ and there is some $n \in \mathbb{Z}^+$ so that $a^0 = e = x^n = a^{kn}$. Since a has infinite order, Theorem 4.1 tells us that we must have $kn = 0$. Since $n \neq 0$, it must be the case that $k = 0$. That is, $x = a^0 = e$. So, the identity is the only element of G with finite order.

p 83, $\#$ 28. Suppose a has infinite order and that $\langle a^i \rangle = \langle a^j \rangle$. Then $a^i \in \langle a^j \rangle$ so that $a^i = (a^j)^k = a^{jk}$ for some k. Likewise, $a^j \in \langle a^i \rangle$ so that $a^j = (a^i)^l = a^{il}$ for some l. Since a has infinite order, Theorem 4.1 tells us that $i = jk$ and $j = il$. Substituting the second equation into the second yields $i = ikl$ or $i(1 - kl) = 0$. This can only happen if $i = 0$ or $kl = 1$. In the first case we have $i = \pm j = 0$, and in the second we have $k = \pm 1$ so that $i = \pm j$ as well.

p 84, $\#$ 46. If $|x| = 40$, then according to Theorem 4.2

$$
|x^k| = \frac{40}{(k, 40)}.
$$

Thus, x^k has order 10 if and only if $(k, 40) = 4$. Theorem 4.1 implies that we may restrict to $0 \leq k < 40$ and it is easy to check that the values of k in this range that satisfy $(k, 40) = 4$ are 4, 12, 28 and 36. Thus, the elements of $\langle x \rangle$ of order 10 are

$$
x^4, x^{12}, x^{28}, x^{36}.
$$

p 85, # 54. Let $H = \langle a \rangle \cap \langle b \rangle$. Since $H \leq \langle a \rangle$ the Fundamental Theorem of Cyclic Groups implies |H| divides |a|. The same reasoning shows that |H| divides |b| as well. Therefore |H| divides $(|a|, |b|) = 1$, i.e. $|H| = 1$. Since the identity is a member of any group, it must be the case that it is the only member of H. That is, $\langle a \rangle \cap \langle b \rangle = H = \{e\}$