Homework #4 Solutions

p 67, #8. In U(14) we have

3mod14 = 9

3*mod 14 = 27mod 14 =13

3*mod 14 = 3-13mod 14 = 39 mod 14 = 11
3mod14 = 3-11mod14=33mod14=5
3°mod15 = 3-5mod14=15mod 14 =1

and

52mod 14 = 25mod 14 =11

5 mod14 = 5-11 mod 14 = 55 mod 14 = 13
5*mod 14 = 5-13mod 14 =65 mod 14 =9
5’mod 14 = 5-9mod 14 =45 mod 14 = 3

5mod 15 = 5-3mod 14 = 15 mod 14 = 1.

Hence (3) = (5) = {1,3,5,9,11,13} = U(14).

p 68, # 16.
Lemma 1. Let G, x € G and k € Z. Then
C(x) < C(z).

Proof. If y € C(x) then x = yay~! so that 2% = (yzy=1)* = ya*y~! (the latter equality was
proven in class) and hence y € C(2*). O

If we apply the lemma with z = a, kK = —1 we have
C(a) < C(a™)

1

while if we take x = a™ we get

proving that C(a) = C(a™).

p 68, # 24. We will prove the following more general fact.
Proposition 1. Let G be a group, a € G and suppose |a| =n. If (k,n) =1 then

C(a) = C(a").



Proof. Taking x = a in the lemma of the preceding problem immediately gives
C(a) < C(a).

We must establish the reverse inclusion. Since (k,n) = 1, we know that there is an m € Z
so that mk mod n = 1. Since |a| = n, this means that a™* = a' = 1 (proven in previous
homework). The lemma above thus implies

C(d") < C((a")™) = C(a™) = C(a)
which finishes the proof. ]

The first part of the problem follows immediately by taking n =5, k = 3.

As for the second part, consider the group Dg. The element Rgy € Dg (counterclockwise
rotation of the hexagon by 60°) has order 6 and R3, = Rigo. If F denotes the flip of the
hexagon across the line y = —z/ V/3 then the illustration below shows that F RgoF % Rgo but
FRigoF = Rig0. Hence F € C(Ryg) but F ¢ C(Rgo) and so C(Rg) # C(Ris0) = C(RY,).
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p 69, # 34. We simply compute the cyclic subgroups generated by each element in U(15) =



{1,2,4,7,8,11,13,14}. We find

(1) = {1}
(2) = {1,2,4,8}
<4> = {174}
(1y = {1,7,4,13}
(8) = {1,8,4,2}
11y = {1,11}
(13) = {1,13,4,7}
(14) = {1,14}
so that the 6 cyclic subgroups are

(1)

(2) (8)

(1) = (13)

(4)

(11)

(14).

p 70, # 42. It is casy to verify that as elements of U(40) we have |11| = |29] = 2 and
1129 mod 40 = 39. Since U(40) is abelian, (the solution to) Exercise # 10 shows that

{1,11,29, 39}

is a subgroup of U(40) of order 4. It is noncyclic because none of its elements have order 4.

p 82, # 2. If |z| = n then Corollary 2 of Theorem 4.2 tells us that
(z) = (')
if and only if (i,n) = 1. Since (z) = {e,z, 2%, ..., 2" '} (Theorem 4.1), we see that the set
of generators of (z) is .
{z']i € U(n)}.

Since U(6) = {1,5}, the only generators of (a) are a and a’. Since U(8) = {1, 3,5, 7},
the generators of (b) are b, b, b® and b7. Finally, since U(20) = {1,3,7,9,11,13,17,19}, the

generators of {c) are ¢, c?,¢”, ¢, ¢t '3 ¢! and .

p 82, # 8. We use Theorem 4.2, which states that if |a| = n then
k’ _ n

la m



(a) Since (3,15) = (6,15) = (9,15) = (12,15) = 3 we see that

15
@] = |a®| = |a”| = |a™| 5
3
(b) Since (5,15) = (10,15) = 5 we see that
15
5 10
= —_ — = 3‘
] = 0" =
(c) Since (2,15) = (4,15) = (8,15) = (14,15) = 1 we see that
15
] = la'| = ¥ = " = 2 = 15

1

p 83, # 18. Let G = (a) and suppose that G has an element of infinite order. Then G must
be infinite and so @ must have infinite order as well, by Theorem 4.1. Let x € G have finite
order. Then x = a* for some k € Z and there is some n € Z* so that a° = e = 2" = a*".
Since a has infinite order, Theorem 4.1 tells us that we must have kn = 0. Since n # 0, it
must be the case that k = 0. That is, x = a” = e. So, the identity is the only element of G
with finite order.

p 83, # 28. Suppose a has infinite order and that (a’) = (a/). Then a’ € (a’) so that
a' = (a/)* = a’* for some k. Likewise, a’ € (a*) so that a/ = (a')! = a® for some [. Since
a has infinite order, Theorem 4.1 tells us that ¢ = jk and j = il. Substituting the second
equation into the second yields ¢ = ikl or i(1 — kl) = 0. This can only happen if ¢ = 0 or
kl = 1. In the first case we have 1 = +7 = 0, and in the second we have kK = 41 so that
1= 17 as well.

p 84, # 46. If |z| = 40, then according to Theorem 4.2
40

k|l _
1= Ty
Thus, z* has order 10 if and only if (k,40) = 4. Theorem 4.1 implies that we may restrict to
0 < k < 40 and it is easy to check that the values of k in this range that satisfy (k,40) = 4
are 4, 12, 28 and 36. Thus, the elements of (z) of order 10 are

4 12 28 .36

p 85, # 54. Let H = (a) N (b). Since H < (a) the Fundamental Theorem of Cyclic Groups
implies |H| divides |a|. The same reasoning shows that |H| divides |b| as well. Therefore |H |
divides (|al,|b]) = 1, i.e. |H| = 1. Since the identity is a member of any group, it must be
the case that it is the only member of H. That is, (a) N (b) = H = {e}



