Homework #4 Solutions

p 67, #8. In U(14) we have

$$3^2 \mod 14 = 9$$

 $3^3 \mod 14 = 27 \mod 14 = 13$

 $3^4 \mod 14 = 3 \cdot 13 \mod 14 = 39 \mod 14 = 11$

 $3^5 \mod 14 = 3 \cdot 11 \mod 14 = 33 \mod 14 = 5$

 $3^6 \mod 15 = 3 \cdot 5 \mod 14 = 15 \mod 14 = 1$

and

$$5^2 \mod 14 = 25 \mod 14 = 11$$

 $5^3 \mod 14 = 5 \cdot 11 \mod 14 = 55 \mod 14 = 13$

 $5^4 \mod 14 = 5 \cdot 13 \mod 14 = 65 \mod 14 = 9$

 $5^5 \mod 14 = 5 \cdot 9 \mod 14 = 45 \mod 14 = 3$

 $5^6 \mod 15 = 5 \cdot 3 \mod 14 = 15 \mod 14 = 1.$

Hence $\langle 3 \rangle = \langle 5 \rangle = \{1, 3, 5, 9, 11, 13\} = U(14)$.

p 68, # 16.

Lemma 1. Let $G, x \in G$ and $k \in \mathbb{Z}$. Then

$$C(x) \le C(x^k)$$
.

Proof. If $y \in C(x)$ then $x = yxy^{-1}$ so that $x^k = (yxy^{-1})^k = yx^ky^{-1}$ (the latter equality was proven in class) and hence $y \in C(x^k)$.

If we apply the lemma with x = a, k = -1 we have

$$C(a) \le C(a^{-1})$$

while if we take $x = a^{-1}$ we get

$$C(a^{-1}) \le C((a^{-1})^{-1}) = C(a).$$

proving that $C(a) = C(a^{-1})$.

p 68, # 24. We will prove the following more general fact.

Proposition 1. Let G be a group, $a \in G$ and suppose |a| = n. If (k, n) = 1 then

$$C(a) = C(a^k).$$

Proof. Taking x = a in the lemma of the preceding problem immediately gives

$$C(a) \le C(a^k)$$
.

We must establish the reverse inclusion. Since (k, n) = 1, we know that there is an $m \in \mathbb{Z}$ so that $mk \mod n = 1$. Since |a| = n, this means that $a^{mk} = a^1 = 1$ (proven in previous homework). The lemma above thus implies

$$C(a^k) \le C((a^k)^m) = C(a^{mk}) = C(a)$$

which finishes the proof.

The first part of the problem follows immediately by taking n = 5, k = 3.

As for the second part, consider the group D_6 . The element $R_{60} \in D_6$ (counterclockwise rotation of the hexagon by 60^o) has order 6 and $R_{60}^3 = R_{180}$. If F denotes the flip of the hexagon across the line $y = -x/\sqrt{3}$ then the illustration below shows that $FR_{60}F \neq R_{60}$ but $FR_{180}F = R_{180}$. Hence $F \in C(R_{180})$ but $F \notin C(R_{60})$ and so $C(R_{60}) \neq C(R_{180}) = C(R_{60}^3)$.

p 69, # 34. We simply compute the cyclic subgroups generated by each element in U(15) =

 $\{1, 2, 4, 7, 8, 11, 13, 14\}$. We find

$$\begin{array}{rcl}
\langle 1 \rangle & = & \{1\} \\
\langle 2 \rangle & = & \{1, 2, 4, 8\} \\
\langle 4 \rangle & = & \{1, 4\} \\
\langle 7 \rangle & = & \{1, 7, 4, 13\} \\
\langle 8 \rangle & = & \{1, 8, 4, 2\} \\
\langle 11 \rangle & = & \{1, 11\} \\
\langle 13 \rangle & = & \{1, 13, 4, 7\} \\
\langle 14 \rangle & = & \{1, 14\}
\end{array}$$

so that the 6 cyclic subgroups are

$$\begin{array}{rcl}
\langle 1 \rangle \\
\langle 2 \rangle & = & \langle 8 \rangle \\
\langle 7 \rangle & = & \langle 13 \rangle \\
\langle 4 \rangle \\
\langle 11 \rangle \\
\langle 14 \rangle.
\end{array}$$

p 70, # **42.** It is easy to verify that as elements of U(40) we have |11| = |29| = 2 and $11 \cdot 29 \mod 40 = 39$. Since U(40) is abelian, (the solution to) Exercise # 10 shows that

$$\{1, 11, 29, 39\}$$

is a subgroup of U(40) of order 4. It is noncyclic because none of its elements have order 4.

p 82, # **2.** If |x| = n then Corollary 2 of Theorem 4.2 tells us that

$$\langle x \rangle = \langle x^i \rangle$$

if and only if (i, n) = 1. Since $\langle x \rangle = \{e, x, x^2, \dots, x^{n-1}\}$ (Theorem 4.1), we see that the set of generators of $\langle x \rangle$ is

$$\{x^i \mid i \in U(n)\}.$$

Since $U(6) = \{1, 5\}$, the only generators of $\langle a \rangle$ are a and a^5 . Since $U(8) = \{1, 3, 5, 7\}$, the generators of $\langle b \rangle$ are b, b^3, b^5 and b^7 . Finally, since $U(20) = \{1, 3, 7, 9, 11, 13, 17, 19\}$, the generators of $\langle c \rangle$ are $c, c^3, c^7, c^9, c^{11}, c^{13}, c^{17}$ and c^{19} .

p 82, # 8. We use Theorem 4.2, which states that if |a| = n then

$$|a^k| = \frac{n}{(n,k)}.$$

(a) Since (3, 15) = (6, 15) = (9, 15) = (12, 15) = 3 we see that

$$|a^3| = |a^6| = |a^9| = |a^{12}| = \frac{15}{3} = 5.$$

(b) Since (5,15) = (10,15) = 5 we see that

$$|a^5| = |a^{10}| = \frac{15}{5} = 3.$$

(c) Since (2,15) = (4,15) = (8,15) = (14,15) = 1 we see that

$$|a^2| = |a^4| = |a^8| = |a^{14}| = \frac{15}{1} = 15.$$

p 83, # 18. Let $G = \langle a \rangle$ and suppose that G has an element of infinite order. Then G must be infinite and so a must have infinite order as well, by Theorem 4.1. Let $x \in G$ have finite order. Then $x = a^k$ for some $k \in \mathbb{Z}$ and there is some $n \in \mathbb{Z}^+$ so that $a^0 = e = x^n = a^{kn}$. Since a has infinite order, Theorem 4.1 tells us that we must have kn = 0. Since $n \neq 0$, it must be the case that k = 0. That is, $x = a^0 = e$. So, the identity is the only element of G with finite order.

p 83, # **28.** Suppose a has infinite order and that $\langle a^i \rangle = \langle a^j \rangle$. Then $a^i \in \langle a^j \rangle$ so that $a^i = (a^j)^k = a^{jk}$ for some k. Likewise, $a^j \in \langle a^i \rangle$ so that $a^j = (a^i)^l = a^{il}$ for some l. Since a has infinite order, Theorem 4.1 tells us that i = jk and j = il. Substituting the second equation into the second yields i = ikl or i(1 - kl) = 0. This can only happen if i = 0 or kl = 1. In the first case we have $i = \pm j = 0$, and in the second we have $k = \pm 1$ so that $i = \pm j$ as well.

p 84, # **46.** If |x| = 40, then according to Theorem 4.2

$$|x^k| = \frac{40}{(k,40)}.$$

Thus, x^k has order 10 if and only if (k, 40) = 4. Theorem 4.1 implies that we may restrict to $0 \le k < 40$ and it is easy to check that the values of k in this range that satisfy (k, 40) = 4 are 4, 12, 28 and 36. Thus, the elements of $\langle x \rangle$ of order 10 are

$$x^4, x^{12}, x^{28}, x^{36}$$
.

p 85, # **54.** Let $H = \langle a \rangle \cap \langle b \rangle$. Since $H \leq \langle a \rangle$ the Fundamental Theorem of Cyclic Groups implies |H| divides |a|. The same reasoning shows that |H| divides |b| as well. Therefore |H| divides (|a|, |b|) = 1, i.e. |H| = 1. Since the identity is a member of any group, it must be the case that it is the only member of H. That is, $\langle a \rangle \cap \langle b \rangle = H = \{e\}$