
Homework #4 Solutions

p 67, #8. In U(14) we have

32 mod 14 = 9

33 mod 14 = 27 mod 14 = 13

34 mod 14 = 3 · 13 mod 14 = 39 mod 14 = 11

35 mod 14 = 3 · 11 mod 14 = 33 mod 14 = 5

36 mod 15 = 3 · 5 mod 14 = 15 mod 14 = 1

and

52 mod 14 = 25 mod 14 = 11

53 mod 14 = 5 · 11 mod 14 = 55 mod 14 = 13

54 mod 14 = 5 · 13 mod 14 = 65 mod 14 = 9

55 mod 14 = 5 · 9 mod 14 = 45 mod 14 = 3

56 mod 15 = 5 · 3 mod 14 = 15 mod 14 = 1.

Hence 〈3〉 = 〈5〉 = {1, 3, 5, 9, 11, 13} = U(14).

p 68, # 16.

Lemma 1. Let G, x ∈ G and k ∈ Z. Then

C(x) ≤ C(xk).

Proof. If y ∈ C(x) then x = yxy−1 so that xk = (yxy−1)k = yxky−1 (the latter equality was
proven in class) and hence y ∈ C(xk).

If we apply the lemma with x = a, k = −1 we have

C(a) ≤ C(a−1)

while if we take x = a−1 we get

C(a−1) ≤ C((a−1)−1) = C(a).

proving that C(a) = C(a−1).

p 68, # 24. We will prove the following more general fact.

Proposition 1. Let G be a group, a ∈ G and suppose |a| = n. If (k, n) = 1 then

C(a) = C(ak).



Proof. Taking x = a in the lemma of the preceding problem immediately gives

C(a) ≤ C(ak).

We must establish the reverse inclusion. Since (k, n) = 1, we know that there is an m ∈ Z
so that mk mod n = 1. Since |a| = n, this means that amk = a1 = 1 (proven in previous
homework). The lemma above thus implies

C(ak) ≤ C((ak)m) = C(amk) = C(a)

which finishes the proof.

The first part of the problem follows immediately by taking n = 5, k = 3.
As for the second part, consider the group D6. The element R60 ∈ D6 (counterclockwise

rotation of the hexagon by 60o) has order 6 and R3
60 = R180. If F denotes the flip of the

hexagon across the line y = −x/
√

3 then the illustration below shows that FR60F 6= R60 but
FR180F = R180. Hence F ∈ C(R180) but F 6∈ C(R60) and so C(R60) 6= C(R180) = C(R3

60).

p 69, # 34. We simply compute the cyclic subgroups generated by each element in U(15) =



{1, 2, 4, 7, 8, 11, 13, 14}. We find

〈1〉 = {1}
〈2〉 = {1, 2, 4, 8}
〈4〉 = {1, 4}
〈7〉 = {1, 7, 4, 13}
〈8〉 = {1, 8, 4, 2}
〈11〉 = {1, 11}
〈13〉 = {1, 13, 4, 7}
〈14〉 = {1, 14}

so that the 6 cyclic subgroups are

〈1〉
〈2〉 = 〈8〉
〈7〉 = 〈13〉
〈4〉
〈11〉
〈14〉.

p 70, # 42. It is easy to verify that as elements of U(40) we have |11| = |29| = 2 and
11 · 29 mod 40 = 39. Since U(40) is abelian, (the solution to) Exercise # 10 shows that

{1, 11, 29, 39}

is a subgroup of U(40) of order 4. It is noncyclic because none of its elements have order 4.

p 82, # 2. If |x| = n then Corollary 2 of Theorem 4.2 tells us that

〈x〉 = 〈xi〉

if and only if (i, n) = 1. Since 〈x〉 = {e, x, x2, . . . , xn−1} (Theorem 4.1), we see that the set
of generators of 〈x〉 is

{xi | i ∈ U(n)}.
Since U(6) = {1, 5}, the only generators of 〈a〉 are a and a5. Since U(8) = {1, 3, 5, 7},

the generators of 〈b〉 are b, b3, b5 and b7. Finally, since U(20) = {1, 3, 7, 9, 11, 13, 17, 19}, the
generators of 〈c〉 are c, c3, c7, c9, c11, c13, c17 and c19.

p 82, # 8. We use Theorem 4.2, which states that if |a| = n then

|ak| =
n

(n, k)
.



(a) Since (3, 15) = (6, 15) = (9, 15) = (12, 15) = 3 we see that

|a3| = |a6| = |a9| = |a12| =
15

3
= 5.

(b) Since (5, 15) = (10, 15) = 5 we see that

|a5| = |a10| =
15

5
= 3.

(c) Since (2, 15) = (4, 15) = (8, 15) = (14, 15) = 1 we see that

|a2| = |a4| = |a8| = |a14| =
15

1
= 15.

p 83, # 18. Let G = 〈a〉 and suppose that G has an element of infinite order. Then G must
be infinite and so a must have infinite order as well, by Theorem 4.1. Let x ∈ G have finite
order. Then x = ak for some k ∈ Z and there is some n ∈ Z+ so that a0 = e = xn = akn.
Since a has infinite order, Theorem 4.1 tells us that we must have kn = 0. Since n 6= 0, it
must be the case that k = 0. That is, x = a0 = e. So, the identity is the only element of G
with finite order.

p 83, # 28. Suppose a has infinite order and that 〈ai〉 = 〈aj〉. Then ai ∈ 〈aj〉 so that
ai = (aj)k = ajk for some k. Likewise, aj ∈ 〈ai〉 so that aj = (ai)l = ail for some l. Since
a has infinite order, Theorem 4.1 tells us that i = jk and j = il. Substituting the second
equation into the second yields i = ikl or i(1 − kl) = 0. This can only happen if i = 0 or
kl = 1. In the first case we have i = ±j = 0, and in the second we have k = ±1 so that
i = ±j as well.

p 84, # 46. If |x| = 40, then according to Theorem 4.2

|xk| =
40

(k, 40)
.

Thus, xk has order 10 if and only if (k, 40) = 4. Theorem 4.1 implies that we may restrict to
0 ≤ k < 40 and it is easy to check that the values of k in this range that satisfy (k, 40) = 4
are 4, 12, 28 and 36. Thus, the elements of 〈x〉 of order 10 are

x4, x12, x28, x36.

p 85, # 54. Let H = 〈a〉 ∩ 〈b〉. Since H ≤ 〈a〉 the Fundamental Theorem of Cyclic Groups
implies |H| divides |a|. The same reasoning shows that |H| divides |b| as well. Therefore |H|
divides (|a|, |b|) = 1, i.e. |H| = 1. Since the identity is a member of any group, it must be
the case that it is the only member of H. That is, 〈a〉 ∩ 〈b〉 = H = {e}


