Homework #5 Solutions

p 83, #16. In order to find a chain
(a1) < {ag) < -+ < (an)

of subgroups of Zssy with n as large as possible, we start at the top with a,, = 1 so that
(an) = Zaso. In general, given (a;) we will choose (a;_1) to be the largest proper subgroup
of (a;). We will make repeated use of the fundamental theorem of cyclic groups which tells
us that a cyclic group of order m has a unique subgroup of order d for any d|m.

The largest proper subgroup of Zsgo has size 120 and is (2). Since |2| = 120, the largest
proper subgroup of (2) has size 60 and is (4). Since |4] = 60, the largest proper subgroup of
(4) has size 30 and is (8). Since |8] = 30, the largest proper subgroup of (8) has order 15
and is (16). Since |16| = 15, the largest possible subgroup of (16) has order 5 and is (48.
Finally, since |48| = 5 is prime, the only proper subgroup of (48) is (0). Therefore, we have
produced the maximal chain

(0) < (48) < (16) < (8) < (4) < (2) < (1)
which has length 7. Notice that the chain
(0) < (120) < (60) < (30) < (15) < (5) < (1)

also has length 7, but is produced in the opposite way, i.e. by starting with (0) and at each
stage choosing (a;;1) as the smallest subgroup containing (a;).

p 83, # 20. Let z € G. Since 2% = e, we know that |z| = 1,5,7 or 35. Since |G| = 35,
if G contains an element z of order 35, then G = (x) as desired. On the other hand, if G
contains an element z of order 5 and and element y of order 7, then, since GG is abelian

(2y)% = 255y = ce = ¢
so that the order k of zy divides 35. That is, |zy| = 5,7 or 35. If |xy| = 5 then

e=(zy)’ =2’ =ey’ =¢°

which means that 7 = |y| divides 5, a contradiction. Likewise, we have a similar problem if
|zy| = 7. It follows that |zy| = 35, and as above that G is cyclic.

So, what we need to do is show that G must have an element of order 5 and an element of
order 7. We argue by contradiction. If G has no elements of order 5 then every non-identity
element of GG has order 7. That is, there are 34 elements in GG or order 7. However, by the
corollary to Theorem 4.4, the number of elements in G of order 7 is divisible by ¢(7) = 6,
and 34 is not divisible by 6. Likewise, if G had no element of order 7 then G would contain
34 elements of order 5, and this number would have to be divisible by ¢(5) = 4, which is
also impossible. It follows that G must have at least one element of order 5 and at least one
of order 7. As we pointed out above, this forces G to be cyclic.

This argument does not work if 35 is replaced by 33, because 33 = 3-11 and ¢(3) = 2 does
divide 32 = 33 — 1, and so we cannot eliminate the case that GG consists only of elements of



orders 1 or 3. Nevertheless, we will see later that every abelian group of order 33 is, indeed,
cyclic.

p 84, # 36. (=) Suppose that G is the union of the proper subgroups H;, for i € I (I is
some indexing set). Let a € G. Then there is an ¢ € I so that a € H;, and by closure we
have (a) < H;. Since H; # G, it must be the case that (a) # G. Since a € G was arbitrary,
we conclude that G' cannot be cyclic.

(<) Now suppose that G is not cyclic. For any a € G we know that (1) a € (a) and (2)
(a) # G. Tt follows that
G =J

aeG

expresses GG as the union of proper subgroups.

p 84, # 40. The proof of the fundamental theorem of cyclic groups shows that if 0 £ H < Z
then H = (a) where a is the least positive integer in H. Since H = (m) N (n) consists of all
the integers that are common multiples of m and n, it must be the case that H = (a) where
a is the least common multiple of m and n. That is

(m) N (n) = (lem(m,n)).

p 85, # 56. It is enough to show that U(2") has two distinct elements of order 2, say a
and b. For then U(2") will have the non-cyclic subgroup {1, a, b, ab}.

Let a =2"—1and b=2""1—1. Since n > 3, we see that a,b # 1. So to show that a
and b have order 2 in U(2") we need only show that a mod 2" = b* mod 2" = 1. Well

a? = (2" —1)2=2"" 2" 1 =2"(2"-2)+1
b2 — (2n—1 . 1)2 — 22n—2 - 2n 4 1= 2n<2n—2 o 1) 4 1

which give the desired conclusion since n > 2.

p 85, # 60.
Proposition 1. Let |x| =n. Then (x") C (x*) if and only if (n,s)|(n,r)

Proof. (=) Suppose that (z") C (z*). Then |2"| divides |z*|. Since |z"| = n/(n,r) and
|z°| = n/(n,s), this means there is a k so that kn/(n,r) = n/(n,s). That is, k(n, s) = (n,r),
which is what we sought to show.

(<) Now suppose that (n,s)|(n,r). Then, as above, we can show that n/(n,r)n/(n,s).
Since |z°| = n/(n,s), the fundamental theorem of cyclic groups implies that (z®) has a
unique subgroup, H, of order n/(n,r). But n/(n,r) also divides n = |x|, so (z") is the



unique subgroup of (x) of order n/(n,r). Since H is a subgroup of (x) with this property, it
must be the case that (z") = H C (z°).
[

p 85, # 64. Let v € Z(G), x # e. By hypothesis, |z| = p, a prime. Let y € G, y # e, 2.
Then |y| = q and |zy| = [, both primes. Since = € Z(G) we see that

e = (ay)! = a'y!

so that
x_l = yl.
But |27 = |2!| = p/(I,p) and |y'| = ¢/(l,q) and so
b9
(Lp)  (L,q)
or

p(l,q) = q(l,p).
Since [, p, g are prime, this is only possible if p = ¢ = [. That is, for any y € G, |y| = p = |z|.

p 92, # 34. Let H denote the unique nontrivial proper subgroup of G. Assume that G is
not cyclic. Then for any x € G, x # e, (x) = H. That is, for any x € G we have = € H, i.e.

G<H

which is impossible. Therefore G must be cyclic.

If |G| = oo then G has infinitely many subgroups, which is prevented by our hypotheses.
It follows that |G| = n for some n € Z*. Since the subgroups of a cyclic group of order
n correspond to the divisors of n, the only way G can have exactly one nontrivial proper
subgroup is if n has exactly one nontrivial proper divisor. This can only occur if n = p?, p
prime.

Permutation Exercise 1. We must verify the 4 axioms that define a group.

0. Closure. Let f,g € A(S). Since f and g are both one-to-one and onto, it follows from
general set theory that f o g is also one-to-one and onto. Hence fog € A(S) and so A(S)
is closed under composition.

1. Associativity. Let f,g,h € A(S). As above, it is a well known result in set theory that
function composition is associative, i.e. fo(goh) = (fog)oh. This verifies that the operation
in A(S) is associative.

2. Identity. Define 1g : S — S by 1lg(z) = z for all x € S. This is clearly one-to-one and
onto and so 1g € A(S). Furthermore, 1g serves as the identity in A(S). To see this, let
f € A(S). Then for any = € S we have

(fols)(x) = f(ls(x)) = f(z) = 1s(f(2)) = (1s o f) ().



Since x € S was arbitrary this shows that folg = f = 1go f, and since f € A(S) was
arbitrary we have shown that 1g is the identity in A(S).

3. Inverses. Let f € A(S). Once again, general set theory tells us of the existence of a
function g € A(S) with the property that f(g(z)) = g(f(z)) = « for all x € S. We claim
that ¢ is the inverse of f. For any x € S we have

ls(z) =z = f(g(z)) = (f o g)(x)

so that fog = 1g. Similar reasoning shows that go f = 15 as well, and so we conclude that
g is the inverse of f.

Permutation Exercise 2. We apply the two-step subgroup test. Let f € G. Since f(a) = a

we have
a=["(f(a))=f""(a)
so that f~' € G. If g € G as well, then g(a) = a and so
(fog)a) = f(g(a)) = fla) =a
which proves that fog € G. It follows that G < A(S5).

p 112, # 2.
Proposition 2. The order of the k-cycle o = (ajaz - - - ay) is k.

Proof. 1t is clear that o* = e. We must show that k is the smallest positive integer with this
property. Since o%(a;) = aj4; for any 1 <i < k—1 and a; # a1 for j # 1, we see that o' # €
for any 1 <i <k — 1. It follows that |o| = k. O

p 112, # 4. a. It is easy to see that the permutation in question is
(12)(356)

and since these cycles are disjoint the order is lem(2,3) = 6.
b. In this case our permutation is

(1753)(264)

and since these cycles are disjoint the order is lem(4, 3) = 12.

p 113, # 18a. We see that
a = (12345)(678)

and
B = (23847)(56)



and
aff = (12345)(678)(23847)(56) = (12485736)

p 114, # 24. We know that the disjoint cycle structures of elements of S; correspond to
partitions of 7, and that the lem of the numbers in these partitions give the orders of the
elements of S;. To find the elements of order 5, therefore, we must find the partitions of 7
for which the lem of the terms is 5. The only such partition is

7T=5+1+1

and so the only elements of S7; with order 5 must be the product of a 5-cycle and 2 1-cycles,
all disjoint. Since 1-cycles are trivial, we conclude that the only elements in S7 of order 5
are the 5-cycles. We now count these.

The number of 5-tuples of elements of {1,2,3,4,5,6,7}is7-6-5-4-3 = 7!/2!. Since a
given 5-cycle corresponds to exactly 5 5-tuples (i.e. we can write a 5-cycle as starting with
any one of its elements), we see that the number of 5-cycles in S; is

7!

— =7-6-4-3=504.
215

p 114, # 28. We first notice that
3 = (14523)

which has order 5. Since 99 mod 5 = 4 we see that
Y = pt =7t = (13254).

p 114, # 32. Since ( is the product of two disjoint cycles of lengths 7 and 3, |3| =
lem(3,7) = 21. Since the equation 3" = 375 is the same as 3""° = ¢, and the smallest value
for which the last equation holds satisfies n + 5 = 21, we must have n = 21 — 5 = 16.

p 114, # 36. Since (1234) has order 4, H = ((1234)) is a cyclic subgroup of order 4
in S;. On the other hand, (12) and (34) both have order 2 and commute, so that K =
{€,(12),(34),(12)(34)} is a non-cyclic subgroup of order 4 in Sj.

p 114, # 46. Let 0 € Z(S,). Then for any 7 € S,, we have o7 = 70 or, equivalently,

oro !t =1.

By carefully choosing 7 we will show that (i) = for all i € {1,2,...,n}, i.e. that 0 = e.



We start by taking 7 = (12). We have
(12) = 0(12)0~" = (o(1) 0(2)),

the latter equality having been proven in class. This means that we must have (1) =1 or
2. Since n > 3, we can also choose 7 = (13) which yields

(13) = o(13)0 " = (o(1) 0(3))

so that o(1) = 1 or 3. The only way this is compatible with our previous conclusion is if
o(1) =1. Now fix any i € {1,2,...,n}, i # 1. If we let 7 = (14) then we get

(1i) = o(li)o™" = (o(1) o(i)) = (1o())

which tells us that (i) = i. We have therefore shown that o (i) = i for every i € {1,2,...,n}.
As we noted above, this means that o = €, and it follows that Z(S,) = {e¢}.



