
Homework #5 Solutions

p 83, #16. In order to find a chain

〈a1〉 ≤ 〈a2〉 ≤ · · · ≤ 〈an〉

of subgroups of Z240 with n as large as possible, we start at the top with an = 1 so that
〈an〉 = Z240. In general, given 〈ai〉 we will choose 〈ai−1〉 to be the largest proper subgroup
of 〈ai〉. We will make repeated use of the fundamental theorem of cyclic groups which tells
us that a cyclic group of order m has a unique subgroup of order d for any d|m.

The largest proper subgroup of Z240 has size 120 and is 〈2〉. Since |2| = 120, the largest
proper subgroup of 〈2〉 has size 60 and is 〈4〉. Since |4| = 60, the largest proper subgroup of
〈4〉 has size 30 and is 〈8〉. Since |8| = 30, the largest proper subgroup of 〈8〉 has order 15
and is 〈16〉. Since |16| = 15, the largest possible subgroup of 〈16〉 has order 5 and is 〈48.
Finally, since |48| = 5 is prime, the only proper subgroup of 〈48〉 is 〈0〉. Therefore, we have
produced the maximal chain

〈0〉 ≤ 〈48〉 ≤ 〈16〉 ≤ 〈8〉 ≤ 〈4〉 ≤ 〈2〉 ≤ 〈1〉

which has length 7. Notice that the chain

〈0〉 ≤ 〈120〉 ≤ 〈60〉 ≤ 〈30〉 ≤ 〈15〉 ≤ 〈5〉 ≤ 〈1〉

also has length 7, but is produced in the opposite way, i.e. by starting with 〈0〉 and at each
stage choosing 〈ai+1〉 as the smallest subgroup containing 〈ai〉.

p 83, # 20. Let x ∈ G. Since x35 = e, we know that |x| = 1, 5, 7 or 35. Since |G| = 35,
if G contains an element x of order 35, then G = 〈x〉 as desired. On the other hand, if G
contains an element x of order 5 and and element y of order 7, then, since G is abelian

(xy)35 = x35y35 = ee = e

so that the order k of xy divides 35. That is, |xy| = 5, 7 or 35. If |xy| = 5 then

e = (xy)5 = x5y5 = ey5 = y5

which means that 7 = |y| divides 5, a contradiction. Likewise, we have a similar problem if
|xy| = 7. It follows that |xy| = 35, and as above that G is cyclic.

So, what we need to do is show that G must have an element of order 5 and an element of
order 7. We argue by contradiction. If G has no elements of order 5 then every non-identity
element of G has order 7. That is, there are 34 elements in G or order 7. However, by the
corollary to Theorem 4.4, the number of elements in G of order 7 is divisible by φ(7) = 6,
and 34 is not divisible by 6. Likewise, if G had no element of order 7 then G would contain
34 elements of order 5, and this number would have to be divisible by φ(5) = 4, which is
also impossible. It follows that G must have at least one element of order 5 and at least one
of order 7. As we pointed out above, this forces G to be cyclic.

This argument does not work if 35 is replaced by 33, because 33 = 3 ·11 and φ(3) = 2 does
divide 32 = 33− 1, and so we cannot eliminate the case that G consists only of elements of



orders 1 or 3. Nevertheless, we will see later that every abelian group of order 33 is, indeed,
cyclic.

p 84, # 36. (⇒) Suppose that G is the union of the proper subgroups Hi, for i ∈ I (I is
some indexing set). Let a ∈ G. Then there is an i ∈ I so that a ∈ Hi, and by closure we
have 〈a〉 ≤ Hi. Since Hi 6= G, it must be the case that 〈a〉 6= G. Since a ∈ G was arbitrary,
we conclude that G cannot be cyclic.

(⇐) Now suppose that G is not cyclic. For any a ∈ G we know that (1) a ∈ 〈a〉 and (2)
〈a〉 6= G. It follows that

G =
⋃
a∈G

〈a〉

expresses G as the union of proper subgroups.

p 84, # 40. The proof of the fundamental theorem of cyclic groups shows that if 0 6= H ≤ Z
then H = 〈a〉 where a is the least positive integer in H. Since H = 〈m〉 ∩ 〈n〉 consists of all
the integers that are common multiples of m and n, it must be the case that H = 〈a〉 where
a is the least common multiple of m and n. That is

〈m〉 ∩ 〈n〉 = 〈lcm(m, n)〉.

p 85, # 56. It is enough to show that U(2n) has two distinct elements of order 2, say a
and b. For then U(2n) will have the non-cyclic subgroup {1, a, b, ab}.

Let a = 2n − 1 and b = 2n−1 − 1. Since n ≥ 3, we see that a, b 6= 1. So to show that a
and b have order 2 in U(2n) we need only show that a2 mod 2n = b2 mod 2n = 1. Well

a2 = (2n − 1)2 = 22n − 2n+1 + 1 = 2n(2n − 2) + 1

b2 = (2n−1 − 1)2 = 22n−2 − 2n + 1 = 2n(2n−2 − 1) + 1

which give the desired conclusion since n > 2.

p 85, # 60.

Proposition 1. Let |x| = n. Then 〈xr〉 ⊂ 〈xs〉 if and only if (n, s)|(n, r)

Proof. (⇒) Suppose that 〈xr〉 ⊂ 〈xs〉. Then |xr| divides |xs|. Since |xr| = n/(n, r) and
|xs| = n/(n, s), this means there is a k so that kn/(n, r) = n/(n, s). That is, k(n, s) = (n, r),
which is what we sought to show.

(⇐) Now suppose that (n, s)|(n, r). Then, as above, we can show that n/(n, r)|n/(n, s).
Since |xs| = n/(n, s), the fundamental theorem of cyclic groups implies that 〈xs〉 has a
unique subgroup, H, of order n/(n, r). But n/(n, r) also divides n = |x|, so 〈xr〉 is the



unique subgroup of 〈x〉 of order n/(n, r). Since H is a subgroup of 〈x〉 with this property, it
must be the case that 〈xr〉 = H ⊂ 〈xs〉.

p 85, # 64. Let x ∈ Z(G), x 6= e. By hypothesis, |x| = p, a prime. Let y ∈ G, y 6= e, x−1.
Then |y| = q and |xy| = l, both primes. Since x ∈ Z(G) we see that

e = (xy)l = xlyl

so that
x−l = yl.

But |x−l| = |xl| = p/(l, p) and |yl| = q/(l, q) and so

p

(l, p)
=

q

(l, q)
.

or
p(l, q) = q(l, p).

Since l, p, q are prime, this is only possible if p = q = l. That is, for any y ∈ G, |y| = p = |x|.

p 92, # 34. Let H denote the unique nontrivial proper subgroup of G. Assume that G is
not cyclic. Then for any x ∈ G, x 6= e, 〈x〉 = H. That is, for any x ∈ G we have x ∈ H, i.e.

G ≤ H

which is impossible. Therefore G must be cyclic.
If |G| = ∞ then G has infinitely many subgroups, which is prevented by our hypotheses.

It follows that |G| = n for some n ∈ Z+. Since the subgroups of a cyclic group of order
n correspond to the divisors of n, the only way G can have exactly one nontrivial proper
subgroup is if n has exactly one nontrivial proper divisor. This can only occur if n = p2, p
prime.

Permutation Exercise 1. We must verify the 4 axioms that define a group.
0. Closure. Let f, g ∈ A(S). Since f and g are both one-to-one and onto, it follows from
general set theory that f ◦ g is also one-to-one and onto. Hence f ◦ g ∈ A(S) and so A(S)
is closed under composition.

1. Associativity. Let f, g, h ∈ A(S). As above, it is a well known result in set theory that
function composition is associative, i.e. f ◦(g◦h) = (f ◦g)◦h. This verifies that the operation
in A(S) is associative.

2. Identity. Define 1S : S → S by 1S(x) = x for all x ∈ S. This is clearly one-to-one and
onto and so 1S ∈ A(S). Furthermore, 1S serves as the identity in A(S). To see this, let
f ∈ A(S). Then for any x ∈ S we have

(f ◦ 1S)(x) = f(1S(x)) = f(x) = 1S(f(x)) = (1S ◦ f)(x).



Since x ∈ S was arbitrary this shows that f ◦ 1S = f = 1S ◦ f , and since f ∈ A(S) was
arbitrary we have shown that 1S is the identity in A(S).

3. Inverses. Let f ∈ A(S). Once again, general set theory tells us of the existence of a
function g ∈ A(S) with the property that f(g(x)) = g(f(x)) = x for all x ∈ S. We claim
that g is the inverse of f . For any x ∈ S we have

1S(x) = x = f(g(x)) = (f ◦ g)(x)

so that f ◦ g = 1S. Similar reasoning shows that g ◦ f = 1S as well, and so we conclude that
g is the inverse of f .

Permutation Exercise 2. We apply the two-step subgroup test. Let f ∈ G. Since f(a) = a
we have

a = f−1(f(a)) = f−1(a)

so that f−1 ∈ G. If g ∈ G as well, then g(a) = a and so

(f ◦ g)(a) = f(g(a)) = f(a) = a

which proves that f ◦ g ∈ G. It follows that G ≤ A(S).

p 112, # 2.

Proposition 2. The order of the k-cycle σ = (a1a2 · · · ak) is k.

Proof. It is clear that σk = ε. We must show that k is the smallest positive integer with this
property. Since σi(a1) = a1+i for any 1 ≤ i ≤ k− 1 and aj 6= a1 for j 6= 1, we see that σi 6= ε
for any 1 ≤ i ≤ k − 1. It follows that |σ| = k.

p 112, # 4. a. It is easy to see that the permutation in question is

(12)(356)

and since these cycles are disjoint the order is lcm(2, 3) = 6.
b. In this case our permutation is

(1753)(264)

and since these cycles are disjoint the order is lcm(4, 3) = 12.

p 113, # 18a. We see that
α = (12345)(678)

and
β = (23847)(56)



and
αβ = (12345)(678)(23847)(56) = (12485736)

p 114, # 24. We know that the disjoint cycle structures of elements of S7 correspond to
partitions of 7, and that the lcm of the numbers in these partitions give the orders of the
elements of S7. To find the elements of order 5, therefore, we must find the partitions of 7
for which the lcm of the terms is 5. The only such partition is

7 = 5 + 1 + 1

and so the only elements of S7 with order 5 must be the product of a 5-cycle and 2 1-cycles,
all disjoint. Since 1-cycles are trivial, we conclude that the only elements in S7 of order 5
are the 5-cycles. We now count these.

The number of 5-tuples of elements of {1, 2, 3, 4, 5, 6, 7} is 7 · 6 · 5 · 4 · 3 = 7!/2!. Since a
given 5-cycle corresponds to exactly 5 5-tuples (i.e. we can write a 5-cycle as starting with
any one of its elements), we see that the number of 5-cycles in S7 is

7!

2!5
= 7 · 6 · 4 · 3 = 504.

p 114, # 28. We first notice that
β = (14523)

which has order 5. Since 99 mod 5 = 4 we see that

β99 = β4 = β−1 = (13254).

p 114, # 32. Since β is the product of two disjoint cycles of lengths 7 and 3, |β| =
lcm(3, 7) = 21. Since the equation βn = β−5 is the same as βn+5 = ε, and the smallest value
for which the last equation holds satisfies n + 5 = 21, we must have n = 21− 5 = 16.

p 114, # 36. Since (1234) has order 4, H = 〈(1234)〉 is a cyclic subgroup of order 4
in S4. On the other hand, (12) and (34) both have order 2 and commute, so that K =
{ε, (12), (34), (12)(34)} is a non-cyclic subgroup of order 4 in S4.

p 114, # 46. Let σ ∈ Z(Sn). Then for any τ ∈ Sn we have στ = τσ or, equivalently,

στσ−1 = τ.

By carefully choosing τ we will show that σ(i) = i for all i ∈ {1, 2, . . . , n}, i.e. that σ = ε.



We start by taking τ = (12). We have

(12) = σ(12)σ−1 = (σ(1) σ(2)),

the latter equality having been proven in class. This means that we must have σ(1) = 1 or
2. Since n ≥ 3, we can also choose τ = (13) which yields

(13) = σ(13)σ−1 = (σ(1) σ(3))

so that σ(1) = 1 or 3. The only way this is compatible with our previous conclusion is if
σ(1) = 1. Now fix any i ∈ {1, 2, . . . , n}, i 6= 1. If we let τ = (1i) then we get

(1i) = σ(1i)σ−1 = (σ(1) σ(i)) = (1 σ(i))

which tells us that σ(i) = i. We have therefore shown that σ(i) = i for every i ∈ {1, 2, . . . , n}.
As we noted above, this means that σ = ε, and it follows that Z(Sn) = {ε}.


