Homework #6 Solutions

p 112, # 6. Since the LCM of 3 and 5 is 15, any element of S_8 of the form $\sigma = (a_1a_2a_3)(a_4a_5a_6a_6a_8)$ with the a_i all distinct will have order 15. Since 3 and 5 are odd, any 3-cycle or 5-cycle is an even permutation and therefore belongs to A_8 . It follows that every element of S_8 of the form $\sigma = (a_1a_2a_3)(a_4a_5a_6a_6a_8)$ has order 15 and belongs to A_8 . One choice for such an element is $\sigma = (123)(45678)$.

p 112, # **8.** Recall that the disjoint cycle structures of elements in S_{10} correspond to the partitions of 10,

$$l_1 + l_2 + \cdots + l_k = 10$$
, $l_1 \ge l_2 \ge \cdots \ge l_k \ge 1$,

and that the order of an element made up of disjoint cycles of lengths l_1, l_2, \ldots, l_k is $lcm(l_1, l_2, \cdots, l_k)$. We have seen that an *l*-cycle can be written as the product of l-1 transpositions, and it follows that given a partition $l_1 + l_2 + \cdots + l_k = 10$ any corresponding permutation can be written as a product of $(l_1 - 1) + (l_2 - 1) + \cdots + (l_k - 1) = 10 - k$ transpositions. Hence, such a permutation is even if and only if k is even.

So, to determine the possible orders of elements of A_{10} we need only determine the partitions of 10 into an even number of integers:

Partition	LCM
$1+1+\dots+1$	1
$2+2+1+\cdots+1$	2
2 + 2 + 2 + 2 + 1 + 1	2
$3+1+\cdots+1$	3
3 + 2 + 2 + 1 + 1 + 1	6
3 + 3 + 1 + 1 + 1 + 1	3
3 + 3 + 2 + 2	6
3 + 3 + 3 + 1	3
4 + 2 + 1 + 1 + 1 + 1	4
4 + 2 + 2 + 2	2
4 + 3 + 2 + 1	12
4 + 4 + 1 + 1	4
5 + 1 + 1 + 1 + 1 + 1	5
5 + 2 + 2 + 1	10
5 + 3 + 1 + 1	15
5 + 5	5
6 + 2 + 1 + 1	6
6 + 4	12
7 + 1 + 1 + 1	7
7 + 3	21
8 + 2	8
9 + 1	9

We see immediately that the largest order possible is 21.

p 113, # 14. If α is an *r*-cycle, β is an *s*-cycle and γ is a *t*-cycle, then α can be written as r-1 transpositions, β as s-1 transpositions, and γ as t-1 transpositions. It follows that $\alpha\beta$ can be written as r+s-2 transpositions and $\alpha\beta\gamma$ can be written as r+s+t-3transpositions. Hence, $\alpha\beta$ is even if and only if r+s is even and $\alpha\beta\gamma$ is even if and only if r+s+t is odd.

p 113, # 18b. We have, according to the proof of Theorem 5.4,

$$\alpha = (12345)(678) = (15)(14)(13)(12)(68)(67) \beta = (23847)(56) = (27)(24)(28)(23)(56).$$

However, these expressions are not unique.

p 113, # 22. Since A_n is a subgroup of S_n , we find that for any $\sigma \in S_n$, σ is even if and only if σ^{-1} is even. So in the product $\alpha^{-1}\beta^{-1}\alpha\beta$, α and α^{-1} together contribute an even number of transpositions and so do β and β^{-1} . It follows immediately that $\alpha^{-1}\beta^{-1}\alpha\beta \in A_n$.

p 114, # **26.** (1234) has length 4, so is odd. Since every 3-cycle is even, and therefore belongs to A_n , every product of 3-cycles belongs to A_n . Thus, if (1234) were a product of 3-cycles it would be even, a contradiction.

p 114, # **42.** As in #22, the terms β and β^{-1} together contribute an even number of transpositions to the product $\beta \alpha \beta^{-1}$. Hence, the number of transpositions in $\beta \alpha \beta^{-1}$ has the same parity as the number of transpositions in α , i.e. $\beta \alpha \beta^{-1}$ is even precisely when α is even. The conclusion follows.

p 115, # 50. We can view the output of one run of the shuffling machine as an element $\sigma \in S_{13}$, where we label our set of permuted objects with the names of the cards in the deck: $\{A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K\}$. With this convention, we are given that

$$\sigma^{2} = \begin{pmatrix} A & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & J & Q & K \\ 10 & 9 & Q & 8 & K & 3 & 4 & A & 5 & J & 6 & 2 & 7 \end{pmatrix} = (A \ 10 \ J \ 6 \ 3 \ Q \ 2 \ 9 \ 5 \ K \ 7 \ 4 \ 8).$$

We see that σ^2 has order 13. If $|\sigma = n$ then we know that $13 = |\sigma^2| = n/(2, n)$ so that n = (2, n)13. This implies that n = 13 or n = 26. It is easy to see that the latter can not occur (i.e. S_{13} has no element of order 26), so we must have $13 = n = |\sigma|$. It follows that $\langle \sigma \rangle = \langle \sigma^2 \rangle$, which means we can write σ as a power of σ^2 . Since $2 \cdot 7 \mod 13 = 1$ we have

$$\sigma = \sigma^{14} = (\sigma^2)^7 = (A \, 9 \, 10 \, 5 \, J \, K \, 6 \, 7 \, 3 \, 4 \, Q \, 8 \, 2)$$

$$= \begin{pmatrix} A \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ J \ Q \ K \\ 9 \ A \ 4 \ Q \ J \ 7 \ 3 \ 2 \ 10 \ 5 \ K \ 8 \ 6 \end{pmatrix}.$$