Isomorphisms

Exercise 1. Let $n \in Z^+$, $n \ge 2$ and

$$G = \{ \sigma \in S_n \, | \, \sigma(n) = n \}.$$

You proved in assignment 5 that $G \leq S_n$. Now show that $G \cong S_{n-1}$.

Exercise 2. Let G be the smallest subgroup of $GL_2(\mathbb{R})$ containing the matrices

$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \text{ and } B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

Show that $G \cong D_4$.

Exercise 3. Let G be the smallest subgroup of $GL_2(\mathbb{C})$ containing the matrices

$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \text{ and } B = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}.$$

Show that |G| = 8 but $G \not\cong \mathbb{Z}_8$ and $G \not\cong D_4$. G is called the quaternion group of order 8.

Exercise 4. Show that \mathbb{Z} is isomorphic to all of its nontrivial proper subgroups.