Homework #7 Solutions

p 132, #4 Since U(8) = {1,3,5,7} and 3? mod 8 = 52 mod 8 = 7? mod 8, every non-
identity element of U(8) has order 2. However, 3 € U(10) we have

—~

32mod 10 =
33 mod 10 =
3*mod 10 =

= - ©

so that |3| =4 in U(10). Since U(8) does not have any elements of order 4, there can be no
isomorphism between U(10) and U(8), by Part 5 of Theorem 6.2.

p 132, #6 Let G, H and K be groups and suppose that G = H and H = K. Then there
are isomorphisms ¢ : G — H and ¢ : H — K. The composite ¢ o ¢ is a function from G
to K that is one-to-one and onto since both ¢ and 1 are (this is general nonsense about

functions). We will show that it is operation preserving, and hence gives an isomorphism
between GG and K.
For any a,b € G we have (since ¢ and v are operation preserving)

(¥ 0 @)(ab) = v (¢(ab)) = P(d(a)d(b)) = ¥ (p(a))P(d(b)) = (¥ o §)(a)(y o ¢)(b)

which proves that ¢ o ¢ is operation preserving. As noted above, this completes the proof
that G = K.

p 133, #18 Since ¢ € Aut(Zsg), we know that ¢(z) = rz mod 50 for some r € U(50). Since
¢(7) = 13, it must be the case that

13 = ¢(7) = 7r mod 50.

We can remove the 7 and solve for r by multiplying by 7’s inverse in U(50). That is, since
43 - 7mod 50 = 1 we have

r=1-7rmod 50 =43 - 7r mod 50 = 43 - 13 mod 50 = 9.
Hence, ¢(z) = 92 mod 50 for all x € Zsy.



p 133, #22 It is easy to see that U(24) = {1,5,7,11,13,17,19,23} and

52mod 24 = 25mod 24 =1

7?mod24 = 49mod24 =1
112 mod 24 121 mod 24 =1
132mod 24 = 169mod 24 =1
177 mod 24 = 289 mod 24 =1
192 mod 24 361 mod 24 = 1
23 mod 24 = 529 mod 24 = 1

so that every non-identity element of U(24) has order 2. However, since 3 € U(20) and
32 mod 20 = 9 # 1, U(20) has an element with order greater than 2. As above, Theorem 6.2
(part 5) implies that there cannot be an isomorphism between U(24) and U(20).

p 133, #24 Although we won’t prove it here, it is straightforward to verify that G and
H are both groups under addition. So it makes sense to ask whether or not G and H are
isomorphic.

Since every element in g € G has the form ¢ = a + bv/2, a,b € Q, and this expression is
unique', the function

p:G — H
a+bvV2 — (Z 2b>

a

is well-defined. Our goal is to show that p is an isomorphism.
1-1: If p(a; + b1v/2) = p(as + byy/2) then, by the definition of p, we must have

aq 2b1 . aq 2b1

bi m N bi m
which implies that a; = as and b; = by. Hence, a; + bivV2 = ay + bg\/§, which proves that p
is one-to-one.

Onto: This is clear, given the definitions of G, H and p.
Operation Preservation: Let z; = a; + b1v/2, 25 = as + byv/2 € G. Then

T+ Ty = (Cll + bl\/g) + (CLQ + bg\/i) = (a1 + CLQ) + (bl + bQ)\/§

I This fact is essential to our construction, so let’s quickly prove it. Let € G and suppose & = a1 +b1v/2 = az + b2v/2 with
ai,a2,bi,b2 € Q. Then a1 — a2 = (ba — b1)\/§ and if by # by then we have v/2 = (a1 — a2)/(b2 — b1) € Q, which is impossible.
So it must be that by = b from which it follows that a1 = a2 as well.




so that
plry +x2) = p((ag +az)+ (by + 52)\/_)

. a; + as b1 + bg)
o b1 + bg ai + as

1 2b1 a9 2b2

bi by as
play + 51\/_) + plaz + bz\/é)

(

p(z1) + p(z2)

which proves that p is operation preserving.

Since p : G — H is 1-1, onto and preserves the group operations, we conclude that p is
an isomorphism and hence that G = H.

It’s easy to check that both G and H are closed under multiplication (an exercise left
to the reader) and that p preserves these operations as well (which we now prove). Let
r, = a1+ bl\/§, To = Qo + bz\/§ € (. Then

T1Xo = (CLl + bl\/i)(ag + 172\/5) = (alag —+ 2[71[)2) + (a1b2 + Clle)\/é
so that ( )
. a1ao + 2b1b2 2 a1b2 + CLle
,0(31'1.%2) o < a1b2 + CLle ajas + 2b1b2 ) '
On the other hand, we have
a; 2b as 2b
ponte = (52 ) (52 )
i aias + 2b1b2 2(&1[)2 -+ a2b1>
o &1[)2 + azbl aiag + 2b1b2

That is,

(ZL’ T ) o a1a9 +2b1b2 2(@1[)2 —|—a2b1) o (l’ ) (ZE )
pitita) = a1by + ashy  ajag + 2b1by - PAELPT

which proves that p preserves multiplication.

p 134, #32 Define f : R™ — R by f(a) = log;y(a). Asusual, to prove this is an isomorphism
we need to verify that f is one-to-one, onto and preserves the group operations.
One-to-one: If f(a) = f(b) then log,y(a) = log,,(b) so that

a = 10108310(@) — 1010310(b) =b,

proving that f is one-to-one.
Onto: Let y € R. Then a = 10Y € R™ and we see that

f(a) = log;o(a) = log;(10Y) =y,

which shows that f is onto.



Operation preservation: Let a,b € RT. Then, using a familiar property of logarithms
we have

f(ab) = log;o(ab) = logiy(a) + log,o(b) = f(a) + f(b).

Since the operation in R* is multiplication and that in R is addition, we conclude that f is
operation preserving.

Having verified the three defining conditions, we conclude that f is an isomorphism, i.e.
Rt = R.

p 134, #42

Lemma 1. Let ¢ : Q — Q be an operation preserving function®. Then

for allr € Q.
Proof. Let n € Z*, r € Q. Then

p(nr) = ot trt -+ =00)+6(r) +--- +6(r) = no(r).

.

. Vv
n times n times

If we let » = 1 this becomes

whereas if we let » = 1/n we get

or

Also, since ¢(0) = 0 3 we have

0=0¢(0) =¢(r+(-r)) = o(r) + ¢(-r)
so that
¢(=r) = —o(r).

With these facts in hand we can now complete the proof. Let » € Q. If r > 0 then
r =m/n with m,n € Z* and we have

o) =0 (") =0 (m1 ) =ms (+) =mo(n) = ro)

n

On the other hand, if r < 0 then r = —s with s € Q, s > 0 and so by what we have just
proven

¢(r) = ¢(—s) = —¢(s) = —s¢(1) = ro(1).

2Such a function is called a homomorphism.
3This is proven for homomorphisms the same way it is for isomorphisms.



Proposition 1. Let ¢ : Q — Q be one-to-one and operation preserving*. Then ¢ is onto.

Proof. Let s € Q. Since ¢ is one-to-one and ¢(0) = 0, we must have ¢(1) # 0. Set r = s/¢(1).
Then r € Q and so by the Lemma

or) = (@) S ILORE

which proves that ¢ is onto. O

Finishing the exercise is now almost trivial. Let H < Q and suppose that ¢ : Q — H is
an isomorphism. Since H C QQ, we can view ¢ as a one-to-one, operation preserving map into
Q. The Proposition then tells us that, in fact, ¢ must map onto Q. That is, Q = ¢(Q) = H,
so that H is not a proper subgroup of Q. Therefore, Q cannot be isomorphic to any of its
proper subgroups.

Isomorphism Exercise 1: The basic idea here is that given an element ¢ € G, we can
simply “forget” that o acts on the entire set {1,2,...,n}. To be specific, let 0 € G. Since o
is one-to-one and o(n) = n, o must map the complementary set {1,2,...,n — 1} onto itself.
That is

ccG = 01{1,2,‘..,71—1} € Sp-1.

We can therefore define ¢ : G — S,_; by ¥(0) = 0|p2,.n-13- We claim that ¢ is an
isomorphism.
One-to-one: Suppose that 1(c) = ¥ (7). Then, by the definition of 1, it must be that

U’{I,Q,...,n—l} = 7—’{1,2,...,n—1}

i.e. as functions o and 7 agree on the set {1,2,...,n— 1}. But since 0,7 € GG, we know that
o(n) = 7(n) = n. Hence, o0 and 7 actually agree on all of {1,2,...,n} and so 0 = 7.
Onto: To build an element o € G, we must specify the values of o on the set {1,2,...,n—

1}, since we are forced to set o(n) = n. As there are n — 1 choices for the image of 1, n — 2
choices for the image of 2, etc., we find that there are (n — 1)! elements in G (this is the
same argument that was used to count S, in the first place). That is

Gl = (n =1 = [Shl.

Therefore 1) is a one-to-one map between two finite sets of the same size. It follows that
is onto.
Operation preservation: Let 0,7 € G. For any i € {1,2,...,n — 1} we have

(e7){1,2,...,n—1}(i) = (o7)(3)
= o(7(i))
= olpz. -1 (T2, n-13(7))
= (U‘{1,2,...,n—1}7"{1,2,...,n—1})(i)

which shows that ¥(o7) = (67){1,2,...,n—1} = 0|{1,2,,..,7171}7—|{1,2,...,n71} = (0)Y(1).

4Such a function is called a monomorphism.



Isomorphism Exercise 2: Let

We begin by computing:

s -1 0
= (3 5)
s 0 —1
= (1)
At = T
B? =T
1 0
- (34)
o 0 -1
wn - (47

A’B = (‘1 0>:BA

Since G is a group containing A and B, then by closure G must contain the matrices
I,A A% A3 B, AB, A’B, A>B, and we now see that these are all distinct. We claim that
in fact, these 8 matrices form a group, i.e. G = {I, A, A%, A3, B, AB, A2B, A3B}. This is
most easily seen using a Cayley table:

I A Az A3 B AB A’B A®B
I I A A2 A3 B AB A’B A3B
A A A A3 I AB A’B A’B B

A% | A2 A3 I A A’B AB B AB

A3 | A3 I A A*> AB B AB A’B

B B A*B A’B AB I A3 A2 A
AB | AB B A’B A’B A I A3 A2
A*B | A°B AB B A’B A? A I A3
A’B | A3 B A*B AB B A3 A2 A I

The entry in the X* row and Y column is XY, and each was computed using the re-
lations given above: A* = B? = [ and A3B = BA. It is clear from the table that
the set {I,A, A% A3 B, AB, A’B, A3B} is closed under matrix multiplication and so the
finite subgroup test implies it is a group. Thus, the smallest group containing A and B is
G = {I,A A%, A3, B, AB, A2B, ASB).

Isomorphism Exercise 3: Let

0 1 0 1
A:(—l O)andB—(i 0).



As in Exercise 2, we begin by computing:

, -1 0
= (9h)
g _ 0 —1
= (V)
A = T
P (30)-w
s _ 0 —i
g= (5 7)
BY = I
AB = (S_OZ.):B?’A
A’B = B?
AR = (BZ?>:AB3

Since G is a group containing A and B, then by closure G must contain the matrices
I,A A% A3 B, B? AB, A3B, and we now see that these are all distinct. We claim that
in fact, these 8 matrices form a group, i.e. G = {I, A, A%, A3 B, B3, AB, A*B}. This is most
easily seen using a Cayley table:
1 A A2 A3 B B®* AB AB
I 1 A A? A3 B B> AB A’B
A A A? A3 1 AB AB B* B
A? A? A3 I A B> AB B AB
A3 A3 1 A A? A*B AB B B3
B B A3B B® AB @ A? I A A3
B | BB AB B A’B I A2 A3 A
AB | AB B A’B B® A3 A A2 1
ASB | A3B B®* AB B A A3 1 A?

The entry in the X** row and Y column is XY, and each was computed using the relations
given above. It is clear from the table that the set {I, A, A%, A% B, B3, AB, A3B} is closed
under matrix multiplication and so the finite subgroup test implies it is a group. Thus, the
smallest group containing A and B is G = {I, A, A%, A*> B, B3, AB, A3B}.

G is not isomorphic to D4 because D4 has only 2 elements of order 4 (Rgg and Ra7g)
whereas GG has at least 3 elements of order 4 (A, B and AB). And G is not isomorphic to
Zg because G is not cyclic (every element has order 1, 2 or 4).

Isomorphism Exercise 4: Let H < Z, H # {0}. Since Z is cyclic, we know that H is
cyclic as well. Write H = (k), k € Z*. Define f : Z — H by f(n) = nk. It is clear that f is
onto. If f(m) = f(n) then mk = nk and, since k # 0, m = n. Thus [ is one-to-one. Finally,

we see that
Fm+n) = (m+n)k = mk +nk = f(m) + f(n)



proving that f preserves operations. It follows that f is an isomorphism and hence that
Z = H. Since H was arbitrary, we conclude that Z is isomorphic to all of its nontrivial
subgroups.



