
Homework #7 Solutions

p 132, #4 Since U(8) = {1, 3, 5, 7} and 32 mod 8 = 52 mod 8 = 72 mod 8, every non-
identity element of U(8) has order 2. However, 3 ∈ U(10) we have

32 mod 10 = 9

33 mod 10 = 7

34 mod 10 = 1

so that |3| = 4 in U(10). Since U(8) does not have any elements of order 4, there can be no
isomorphism between U(10) and U(8), by Part 5 of Theorem 6.2.

p 132, #6 Let G, H and K be groups and suppose that G ∼= H and H ∼= K. Then there
are isomorphisms φ : G → H and ψ : H → K. The composite ψ ◦ φ is a function from G
to K that is one-to-one and onto since both φ and ψ are (this is general nonsense about
functions). We will show that it is operation preserving, and hence gives an isomorphism
between G and K.

For any a, b ∈ G we have (since φ and ψ are operation preserving)

(ψ ◦ φ)(ab) = ψ(φ(ab)) = ψ(φ(a)φ(b)) = ψ(φ(a))ψ(φ(b)) = (ψ ◦ φ)(a)(ψ ◦ φ)(b)

which proves that ψ ◦ φ is operation preserving. As noted above, this completes the proof
that G ∼= K.

p 133, #18 Since φ ∈ Aut(Z50), we know that φ(x) = rx mod 50 for some r ∈ U(50). Since
φ(7) = 13, it must be the case that

13 = φ(7) = 7r mod 50.

We can remove the 7 and solve for r by multiplying by 7’s inverse in U(50). That is, since
43 · 7 mod 50 = 1 we have

r = 1 · r mod 50 = 43 · 7r mod 50 = 43 · 13 mod 50 = 9.

Hence, φ(x) = 9x mod 50 for all x ∈ Z50.



p 133, #22 It is easy to see that U(24) = {1, 5, 7, 11, 13, 17, 19, 23} and

52 mod 24 = 25 mod 24 = 1

72 mod 24 = 49 mod 24 = 1

112 mod 24 = 121 mod 24 = 1

132 mod 24 = 169 mod 24 = 1

172 mod 24 = 289 mod 24 = 1

192 mod 24 = 361 mod 24 = 1

232 mod 24 = 529 mod 24 = 1

so that every non-identity element of U(24) has order 2. However, since 3 ∈ U(20) and
32 mod 20 = 9 6= 1, U(20) has an element with order greater than 2. As above, Theorem 6.2
(part 5) implies that there cannot be an isomorphism between U(24) and U(20).

p 133, #24 Although we won’t prove it here, it is straightforward to verify that G and
H are both groups under addition. So it makes sense to ask whether or not G and H are
isomorphic.

Since every element in g ∈ G has the form g = a + b
√

2, a, b ∈ Q, and this expression is
unique1, the function

ρ : G → H

a+ b
√

2 7→
(
a 2b
b a

)
is well-defined. Our goal is to show that ρ is an isomorphism.

1-1: If ρ(a1 + b1
√

2) = ρ(a2 + b2
√

2) then, by the definition of ρ, we must have(
a1 2b1
b1 a1

)
=

(
a1 2b1
b1 a1

)
which implies that a1 = a2 and b1 = b2. Hence, a1 + b1

√
2 = a2 + b2

√
2, which proves that ρ

is one-to-one.
Onto: This is clear, given the definitions of G, H and ρ.
Operation Preservation: Let x1 = a1 + b1

√
2, x2 = a2 + b2

√
2 ∈ G. Then

x1 + x2 = (a1 + b1
√

2) + (a2 + b2
√

2) = (a1 + a2) + (b1 + b2)
√

2

1This fact is essential to our construction, so let’s quickly prove it. Let x ∈ G and suppose x = a1 + b1
√

2 = a2 + b2
√

2 with
a1, a2, b1, b2 ∈ Q. Then a1 − a2 = (b2 − b1)

√
2 and if b1 6= b2 then we have

√
2 = (a1 − a2)/(b2 − b1) ∈ Q, which is impossible.

So it must be that b1 = b2 from which it follows that a1 = a2 as well.



so that

ρ(x1 + x2) = ρ((a1 + a2) + (b1 + b2)
√

2)

=

(
a1 + a2 2(b1 + b2)
b1 + b2 a1 + a2

)
=

(
a1 2b1
b1 a1

)
+

(
a2 2b2
b2 a2

)
= ρ(a1 + b1

√
2) + ρ(a2 + b2

√
2)

= ρ(x1) + ρ(x2)

which proves that ρ is operation preserving.
Since ρ : G → H is 1-1, onto and preserves the group operations, we conclude that ρ is

an isomorphism and hence that G ∼= H.
It’s easy to check that both G and H are closed under multiplication (an exercise left

to the reader) and that ρ preserves these operations as well (which we now prove). Let
x1 = a1 + b1

√
2, x2 = a2 + b2

√
2 ∈ G. Then

x1x2 = (a1 + b1
√

2)(a2 + b2
√

2) = (a1a2 + 2b1b2) + (a1b2 + a2b1)
√

2

so that

ρ(x1x2) =

(
a1a2 + 2b1b2 2(a1b2 + a2b1)
a1b2 + a2b1 a1a2 + 2b1b2

)
.

On the other hand, we have

ρ(x1)ρ(x2) =

(
a1 2b1
b1 a1

) (
a2 2b2
b2 a2

)
=

(
a1a2 + 2b1b2 2(a1b2 + a2b1)
a1b2 + a2b1 a1a2 + 2b1b2

)
That is,

ρ(x1x2) =

(
a1a2 + 2b1b2 2(a1b2 + a2b1)
a1b2 + a2b1 a1a2 + 2b1b2

)
= ρ(x1)ρ(x2)

which proves that ρ preserves multiplication.

p 134, #32 Define f : R+ → R by f(a) = log10(a). As usual, to prove this is an isomorphism
we need to verify that f is one-to-one, onto and preserves the group operations.

One-to-one: If f(a) = f(b) then log10(a) = log10(b) so that

a = 10log10(a) = 10log10(b) = b,

proving that f is one-to-one.
Onto: Let y ∈ R. Then a = 10y ∈ R+ and we see that

f(a) = log10(a) = log10(10
y) = y,

which shows that f is onto.



Operation preservation: Let a, b ∈ R+. Then, using a familiar property of logarithms
we have

f(ab) = log10(ab) = log10(a) + log10(b) = f(a) + f(b).

Since the operation in R+ is multiplication and that in R is addition, we conclude that f is
operation preserving.

Having verified the three defining conditions, we conclude that f is an isomorphism, i.e.
R+ ∼= R.

p 134, #42

Lemma 1. Let φ : Q → Q be an operation preserving function2. Then

φ(r) = rφ(1)

for all r ∈ Q.

Proof. Let n ∈ Z+, r ∈ Q. Then

φ(nr) = φ(r + r + · · ·+ r︸ ︷︷ ︸
n times

= φ(r) + φ(r) + · · ·+ φ(r)︸ ︷︷ ︸
n times

= nφ(r).

If we let r = 1 this becomes
φ(n) = nφ(1)

whereas if we let r = 1/n we get

φ(1) = nφ

(
1

n

)
or

φ

(
1

n

)
=

1

n
φ(1).

Also, since φ(0) = 0 3 we have

0 = φ(0) = φ(r + (−r)) = φ(r) + φ(−r)

so that
φ(−r) = −φ(r).

With these facts in hand we can now complete the proof. Let r ∈ Q. If r > 0 then
r = m/n with m,n ∈ Z+ and we have

φ(r) = φ
(m
n

)
= φ

(
m

1

n

)
= mφ

(
1

n

)
= m

1

n
φ(1) = rφ(1).

On the other hand, if r < 0 then r = −s with s ∈ Q, s > 0 and so by what we have just
proven

φ(r) = φ(−s) = −φ(s) = −sφ(1) = rφ(1).

2Such a function is called a homomorphism.
3This is proven for homomorphisms the same way it is for isomorphisms.



Proposition 1. Let φ : Q → Q be one-to-one and operation preserving4. Then φ is onto.

Proof. Let s ∈ Q. Since φ is one-to-one and φ(0) = 0, we must have φ(1) 6= 0. Set r = s/φ(1).
Then r ∈ Q and so by the Lemma

φ(r) = φ

(
s

φ(1)

)
=

s

φ(1)
φ(1) = s

which proves that φ is onto.

Finishing the exercise is now almost trivial. Let H ≤ Q and suppose that φ : Q → H is
an isomorphism. Since H ⊂ Q, we can view φ as a one-to-one, operation preserving map into
Q. The Proposition then tells us that, in fact, φ must map onto Q. That is, Q = φ(Q) = H,
so that H is not a proper subgroup of Q. Therefore, Q cannot be isomorphic to any of its
proper subgroups.

Isomorphism Exercise 1: The basic idea here is that given an element σ ∈ G, we can
simply “forget” that σ acts on the entire set {1, 2, . . . , n}. To be specific, let σ ∈ G. Since σ
is one-to-one and σ(n) = n, σ must map the complementary set {1, 2, . . . , n− 1} onto itself.
That is

σ ∈ G ⇒ σ|{1,2,...,n−1} ∈ Sn−1.

We can therefore define ψ : G → Sn−1 by ψ(σ) = σ|{1,2,...,n−1}. We claim that ψ is an
isomorphism.

One-to-one: Suppose that ψ(σ) = ψ(τ). Then, by the definition of ψ, it must be that

σ|{1,2,...,n−1} = τ |{1,2,...,n−1}

i.e. as functions σ and τ agree on the set {1, 2, . . . , n− 1}. But since σ, τ ∈ G, we know that
σ(n) = τ(n) = n. Hence, σ and τ actually agree on all of {1, 2, . . . , n} and so σ = τ .

Onto: To build an element σ ∈ G, we must specify the values of σ on the set {1, 2, . . . , n−
1}, since we are forced to set σ(n) = n. As there are n− 1 choices for the image of 1, n− 2
choices for the image of 2, etc., we find that there are (n − 1)! elements in G (this is the
same argument that was used to count Sn in the first place). That is

|G| = (n− 1)! = |Sn−1|.

Therefore ψ is a one-to-one map between two finite sets of the same size. It follows that ψ
is onto.

Operation preservation: Let σ, τ ∈ G. For any i ∈ {1, 2, . . . , n− 1} we have

(στ){1, 2, . . . , n− 1}(i) = (στ)(i)

= σ(τ(i))

= σ|{1,2,...,n−1}(τ |{1,2,...,n−1}(i))

= (σ|{1,2,...,n−1}τ |{1,2,...,n−1})(i)

which shows that ψ(στ) = (στ){1, 2, . . . , n− 1} = σ|{1,2,...,n−1}τ |{1,2,...,n−1} = ψ(σ)ψ(τ).

4Such a function is called a monomorphism.



Isomorphism Exercise 2: Let

A =

(
0 1
−1 0

)
and B =

(
0 1
1 0

)
.

We begin by computing:

A2 =

(
−1 0
0 −1

)
A3 =

(
0 −1
1 0

)
A4 = I

B2 = I

AB =

(
1 0
0 −1

)
A2B =

(
0 −1
−1 0

)
A3B =

(
−1 0
0 1

)
= BA

Since G is a group containing A and B, then by closure G must contain the matrices
I, A,A2, A3, B,AB,A2B,A3B, and we now see that these are all distinct. We claim that
in fact, these 8 matrices form a group, i.e. G = {I, A,A2, A3, B,AB,A2B,A3B}. This is
most easily seen using a Cayley table:

I A A2 A3 B AB A2B A3B
I I A A2 A3 B AB A2B A3B
A A A2 A3 I AB A2B A3B B
A2 A2 A3 I A A2B A3B B AB
A3 A3 I A A2 A3B B AB A2B
B B A3B A2B AB I A3 A2 A
AB AB B A3B A2B A I A3 A2

A2B A2B AB B A3B A2 A I A3

A3B A3B A2B AB B A3 A2 A I

The entry in the X th row and Y th column is XY , and each was computed using the re-
lations given above: A4 = B2 = I and A3B = BA. It is clear from the table that
the set {I, A,A2, A3, B,AB,A2B,A3B} is closed under matrix multiplication and so the
finite subgroup test implies it is a group. Thus, the smallest group containing A and B is
G = {I, A,A2, A3, B,AB,A2B,A3B}.

Isomorphism Exercise 3: Let

A =

(
0 1
−1 0

)
and B =

(
0 i
i 0

)
.



As in Exercise 2, we begin by computing:

A2 =

(
−1 0
0 −1

)
A3 =

(
0 −1
1 0

)
A4 = I

B2 =

(
−1 0
0 −1

)
= A2

B3 =

(
0 −i
−i 0

)
B4 = I

AB =

(
i 0
0 −i

)
= B3A

A2B = B3

A3B =

(
−i 0
0 i

)
= AB3

Since G is a group containing A and B, then by closure G must contain the matrices
I, A,A2, A3, B,B3, AB,A3B, and we now see that these are all distinct. We claim that
in fact, these 8 matrices form a group, i.e. G = {I, A,A2, A3, B,B3, AB,A3B}. This is most
easily seen using a Cayley table:

I A A2 A3 B B3 AB A3B
I I A A2 A3 B B3 AB A3B
A A A2 A3 I AB A3B B3 B
A2 A2 A3 I A B3 A3B B AB
A3 A3 I A A2 A3B AB B B3

B B A3B B3 AB A2 I A A3

B3 B3 AB B A3B I A2 A3 A
AB AB B A3B B3 A3 A A2 I
A3B A3B B3 AB B A A3 I A2

The entry in the X th row and Y th column is XY , and each was computed using the relations
given above. It is clear from the table that the set {I, A,A2, A3, B,B3, AB,A3B} is closed
under matrix multiplication and so the finite subgroup test implies it is a group. Thus, the
smallest group containing A and B is G = {I, A,A2, A3, B,B3, AB,A3B}.
G is not isomorphic to D4 because D4 has only 2 elements of order 4 (R90 and R270)

whereas G has at least 3 elements of order 4 (A, B and AB). And G is not isomorphic to
Z8 because G is not cyclic (every element has order 1, 2 or 4).

Isomorphism Exercise 4: Let H ≤ Z, H 6= {0}. Since Z is cyclic, we know that H is
cyclic as well. Write H = 〈k〉, k ∈ Z+. Define f : Z → H by f(n) = nk. It is clear that f is
onto. If f(m) = f(n) then mk = nk and, since k 6= 0, m = n. Thus f is one-to-one. Finally,
we see that

f(m+ n) = (m+ n)k = mk + nk = f(m) + f(n)



proving that f preserves operations. It follows that f is an isomorphism and hence that
Z ∼= H. Since H was arbitrary, we conclude that Z is isomorphic to all of its nontrivial
subgroups.


