p 132, $\#4$ Since $U(8) = \{1, 3, 5, 7\}$ and $3^2 \text{ mod } 8 = 5^2 \text{ mod } 8 = 7^2 \text{ mod } 8$, every nonidentity element of $U(8)$ has order 2. However, $3 \in U(10)$ we have

$$
32 \mod 10 = 9
$$

$$
33 \mod 10 = 7
$$

$$
34 \mod 10 = 1
$$

so that $|3| = 4$ in $U(10)$. Since $U(8)$ does not have any elements of order 4, there can be no isomorphism between $U(10)$ and $U(8)$, by Part 5 of Theorem 6.2.

p 132, #6 Let G, H and K be groups and suppose that $G \cong H$ and $H \cong K$. Then there are isomorphisms $\phi : G \to H$ and $\psi : H \to K$. The composite $\psi \circ \phi$ is a function from G to K that is one-to-one and onto since both ϕ and ψ are (this is general nonsense about functions). We will show that it is operation preserving, and hence gives an isomorphism between G and K .

For any $a, b \in G$ we have (since ϕ and ψ are operation preserving)

$$
(\psi \circ \phi)(ab) = \psi(\phi(ab)) = \psi(\phi(a)\phi(b)) = \psi(\phi(a))\psi(\phi(b)) = (\psi \circ \phi)(a)(\psi \circ \phi)(b)
$$

which proves that $\psi \circ \phi$ is operation preserving. As noted above, this completes the proof that $G \cong K$.

p 133, #18 Since $\phi \in \text{Aut}(\mathbb{Z}_{50})$, we know that $\phi(x) = rx \text{ mod } 50$ for some $r \in U(50)$. Since $\phi(7) = 13$, it must be the case that

$$
13 = \phi(7) = 7r \mod 50.
$$

We can remove the 7 and solve for r by multiplying by 7's inverse in $U(50)$. That is, since $43 \cdot 7 \mod 50 = 1$ we have

$$
r = 1 \cdot r \mod 50 = 43 \cdot 7r \mod 50 = 43 \cdot 13 \mod 50 = 9.
$$

Hence, $\phi(x) = 9x \text{ mod } 50$ for all $x \in \mathbb{Z}_{50}$.

p 133, $\#22$ It is easy to see that $U(24) = \{1, 5, 7, 11, 13, 17, 19, 23\}$ and

$$
52 \mod 24 = 25 \mod 24 = 1
$$

$$
72 \mod 24 = 49 \mod 24 = 1
$$

$$
112 \mod 24 = 121 \mod 24 = 1
$$

$$
132 \mod 24 = 169 \mod 24 = 1
$$

$$
172 \mod 24 = 289 \mod 24 = 1
$$

$$
192 \mod 24 = 361 \mod 24 = 1
$$

$$
232 \mod 24 = 529 \mod 24 = 1
$$

so that every non-identity element of $U(24)$ has order 2. However, since $3 \in U(20)$ and $3^2 \text{ mod } 20 = 9 \neq 1, U(20)$ has an element with order greater than 2. As above, Theorem 6.2 (part 5) implies that there cannot be an isomorphism between $U(24)$ and $U(20)$.

p 133, $\#24$ Although we won't prove it here, it is straightforward to verify that G and H are both groups under addition. So it makes sense to ask whether or not G and H are isomorphic.

Since every element in $g \in G$ has the form $g = a + b$ $\sqrt{2}$, $a, b \in \mathbb{Q}$, and this expression is unique¹, the function

$$
\rho: G \to H
$$

$$
a + b\sqrt{2} \mapsto \begin{pmatrix} a & 2b \\ b & a \end{pmatrix}
$$

is well-defined. Our goal is to show that ρ is an isomorphism.

1-1: If $\rho(a_1 + b_1 \sqrt{2}) = \rho(a_2 + b_2 \sqrt{2})$ then, by the definition of ρ , we must have

$$
\left(\begin{array}{cc} a_1 & 2b_1 \\ b_1 & a_1 \end{array}\right) = \left(\begin{array}{cc} a_1 & 2b_1 \\ b_1 & a_1 \end{array}\right)
$$

which implies that $a_1 = a_2$ and $b_1 = b_2$. Hence, $a_1 + b_1$ √ $2 = a_2 + b_2$ √ 2, which proves that ρ is one-to-one.

Onto: This is clear, given the definitions of G, H and ρ .

Operation Preservation: Let $x_1 = a_1 + b_1 \sqrt{2}$, $x_2 = a_2 + b_2$ √ $2 \in G$. Then

$$
x_1 + x_2 = (a_1 + b_1\sqrt{2}) + (a_2 + b_2\sqrt{2}) = (a_1 + a_2) + (b_1 + b_2)\sqrt{2}
$$

¹This fact is essential to our construction, so let's quickly prove it. Let $x \in G$ and suppose $x = a_1 + b_1\sqrt{2} = a_2 + b_2\sqrt{2}$ with $a_1, a_2, b_1, b_2 \in \mathbb{Q}$. Then $a_1 - a_2 = (b_2 - b_1)\sqrt{2}$ and if $b_1 \neq b_2$ then we have So it must be that $b_1 = b_2$ from which it follows that $a_1 = a_2$ as well.

so that

$$
\rho(x_1 + x_2) = \rho((a_1 + a_2) + (b_1 + b_2)\sqrt{2})
$$

=
$$
\begin{pmatrix} a_1 + a_2 & 2(b_1 + b_2) \\ b_1 + b_2 & a_1 + a_2 \end{pmatrix}
$$

=
$$
\begin{pmatrix} a_1 & 2b_1 \\ b_1 & a_1 \end{pmatrix} + \begin{pmatrix} a_2 & 2b_2 \\ b_2 & a_2 \end{pmatrix}
$$

=
$$
\rho(a_1 + b_1\sqrt{2}) + \rho(a_2 + b_2\sqrt{2})
$$

=
$$
\rho(x_1) + \rho(x_2)
$$

which proves that ρ is operation preserving.

Since $\rho: G \to H$ is 1-1, onto and preserves the group operations, we conclude that ρ is an isomorphism and hence that $G \cong H$.

It's easy to check that both G and H are closed under multiplication (an exercise left to the reader) and that ρ preserves these operations as well (which we now prove). Let $x_1 = a_1 + b_1 \sqrt{2}, x_2 = a_2 + b_2 \sqrt{2} \in G$. Then

$$
x_1x_2 = (a_1 + b_1\sqrt{2})(a_2 + b_2\sqrt{2}) = (a_1a_2 + 2b_1b_2) + (a_1b_2 + a_2b_1)\sqrt{2}
$$

so that

$$
\rho(x_1x_2) = \begin{pmatrix} a_1a_2 + 2b_1b_2 & 2(a_1b_2 + a_2b_1) \\ a_1b_2 + a_2b_1 & a_1a_2 + 2b_1b_2 \end{pmatrix}
$$

.

On the other hand, we have

$$
\rho(x_1)\rho(x_2) = \begin{pmatrix} a_1 & 2b_1 \\ b_1 & a_1 \end{pmatrix} \begin{pmatrix} a_2 & 2b_2 \\ b_2 & a_2 \end{pmatrix}
$$

=
$$
\begin{pmatrix} a_1a_2 + 2b_1b_2 & 2(a_1b_2 + a_2b_1) \\ a_1b_2 + a_2b_1 & a_1a_2 + 2b_1b_2 \end{pmatrix}
$$

That is,

$$
\rho(x_1x_2) = \begin{pmatrix} a_1a_2 + 2b_1b_2 & 2(a_1b_2 + a_2b_1) \ a_1b_2 + a_2b_1 & a_1a_2 + 2b_1b_2 \end{pmatrix} = \rho(x_1)\rho(x_2)
$$

which proves that ρ preserves multiplication.

p 134, #32 Define $f : \mathbb{R}^+ \to \mathbb{R}$ by $f(a) = \log_{10}(a)$. As usual, to prove this is an isomorphism we need to verify that f is one-to-one, onto and preserves the group operations.

One-to-one: If $f(a) = f(b)$ then $log_{10}(a) = log_{10}(b)$ so that

$$
a = 10^{\log_{10}(a)} = 10^{\log_{10}(b)} = b,
$$

proving that f is one-to-one.

Onto: Let $y \in \mathbb{R}$. Then $a = 10^y \in \mathbb{R}^+$ and we see that

$$
f(a) = \log_{10}(a) = \log_{10}(10^y) = y,
$$

which shows that f is onto.

Operation preservation: Let $a, b \in \mathbb{R}^+$. Then, using a familiar property of logarithms we have

$$
f(ab) = \log_{10}(ab) = \log_{10}(a) + \log_{10}(b) = f(a) + f(b).
$$

Since the operation in \mathbb{R}^+ is multiplication and that in $\mathbb R$ is addition, we conclude that f is operation preserving.

Having verified the three defining conditions, we conclude that f is an isomorphism, i.e. $\mathbb{R}^+\cong \mathbb{R}$.

p 134, #42

Lemma 1. Let $\phi : \mathbb{Q} \to \mathbb{Q}$ be an operation preserving function². Then

$$
\phi(r) = r\phi(1)
$$

for all $r \in \mathbb{Q}$.

Proof. Let $n \in \mathbb{Z}^+$, $r \in \mathbb{Q}$. Then

$$
\phi(nr) = \phi(\underbrace{r + r + \cdots + r}_{n \text{ times}}) = \underbrace{\phi(r) + \phi(r) + \cdots + \phi(r)}_{n \text{ times}}) = n\phi(r).
$$

If we let $r = 1$ this becomes

$$
\phi(n) = n\phi(1)
$$

whereas if we let $r = 1/n$ we get

$$
\phi(1) = n\phi\left(\frac{1}{n}\right)
$$

$$
\phi\left(\frac{1}{n}\right) = \frac{1}{n}\phi(1).
$$

Also, since $\phi(0) = 0^3$ we have

$$
0 = \phi(0) = \phi(r + (-r)) = \phi(r) + \phi(-r)
$$

so that

or

$$
\phi(-r) = -\phi(r).
$$

With these facts in hand we can now complete the proof. Let $r \in \mathbb{Q}$. If $r > 0$ then $r = m/n$ with $m, n \in \mathbb{Z}^+$ and we have

$$
\phi(r) = \phi\left(\frac{m}{n}\right) = \phi\left(m\frac{1}{n}\right) = m\phi\left(\frac{1}{n}\right) = m\frac{1}{n}\phi(1) = r\phi(1).
$$

On the other hand, if $r < 0$ then $r = -s$ with $s \in \mathbb{Q}$, $s > 0$ and so by what we have just proven

$$
\phi(r) = \phi(-s) = -\phi(s) = -s\phi(1) = r\phi(1).
$$

 \Box

 2 Such a function is called a *homomorphism*.

³This is proven for homomorphisms the same way it is for isomorphisms.

Proposition 1. Let $\phi : \mathbb{Q} \to \mathbb{Q}$ be one-to-one and operation preserving⁴. Then ϕ is onto.

Proof. Let $s \in \mathbb{Q}$. Since ϕ is one-to-one and $\phi(0) = 0$, we must have $\phi(1) \neq 0$. Set $r = s/\phi(1)$. Then $r \in \mathbb{Q}$ and so by the Lemma

$$
\phi(r) = \phi\left(\frac{s}{\phi(1)}\right) = \frac{s}{\phi(1)}\phi(1) = s
$$

 \Box

which proves that ϕ is onto.

Finishing the exercise is now almost trivial. Let $H \leq \mathbb{Q}$ and suppose that $\phi : \mathbb{Q} \to H$ is an isomorphism. Since $H \subset \mathbb{Q}$, we can view ϕ as a one-to-one, operation preserving map into Q. The Proposition then tells us that, in fact, ϕ must map onto Q. That is, $\mathbb{Q} = \phi(\mathbb{Q}) = H$, so that H is not a proper subgroup of $\mathbb Q$. Therefore, $\mathbb Q$ cannot be isomorphic to any of its proper subgroups.

Isomorphism Exercise 1: The basic idea here is that given an element $\sigma \in G$, we can simply "forget" that σ acts on the entire set $\{1, 2, \ldots, n\}$. To be specific, let $\sigma \in G$. Since σ is one-to-one and $\sigma(n) = n$, σ must map the complementary set $\{1, 2, ..., n-1\}$ onto itself. That is

$$
\sigma \in G \Rightarrow \sigma|_{\{1,2,\ldots,n-1\}} \in S_{n-1}.
$$

We can therefore define $\psi : G \to S_{n-1}$ by $\psi(\sigma) = \sigma|_{\{1,2,\dots,n-1\}}$. We claim that ψ is an isomorphism.

One-to-one: Suppose that $\psi(\sigma) = \psi(\tau)$. Then, by the definition of ψ , it must be that

$$
\sigma|_{\{1,2,\ldots,n-1\}} = \tau|_{\{1,2,\ldots,n-1\}}
$$

i.e. as functions σ and τ agree on the set $\{1, 2, \ldots, n-1\}$. But since $\sigma, \tau \in G$, we know that $\sigma(n) = \tau(n) = n$. Hence, σ and τ actually agree on all of $\{1, 2, \ldots, n\}$ and so $\sigma = \tau$.

Onto: To build an element $\sigma \in G$, we must specify the values of σ on the set $\{1, 2, \ldots, n-\}$ 1}, since we are forced to set $\sigma(n) = n$. As there are $n-1$ choices for the image of 1, $n-2$ choices for the image of 2, etc., we find that there are $(n-1)!$ elements in G (this is the same argument that was used to count S_n in the first place). That is

$$
|G| = (n - 1)! = |S_{n-1}|.
$$

Therefore ψ is a one-to-one map between two finite sets of the same size. It follows that ψ is onto.

Operation preservation: Let $\sigma, \tau \in G$. For any $i \in \{1, 2, ..., n-1\}$ we have

$$
(\sigma \tau) \{1, 2, ..., n-1\}(i) = (\sigma \tau)(i)
$$

= $\sigma(\tau(i))$
= $\sigma |_{\{1, 2, ..., n-1\}}(\tau |_{\{1, 2, ..., n-1\}}(i))$
= $(\sigma |_{\{1, 2, ..., n-1\}}\tau |_{\{1, 2, ..., n-1\}})(i)$

which shows that $\psi(\sigma \tau) = (\sigma \tau) \{1, 2, ..., n-1\} = \sigma|_{\{1, 2, ..., n-1\}} \tau|_{\{1, 2, ..., n-1\}} = \psi(\sigma) \psi(\tau)$.

⁴Such a function is called a monomorphism.

Isomorphism Exercise 2: Let

$$
A = \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right) \text{ and } B = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right).
$$

We begin by computing:

$$
A^{2} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}
$$

\n
$$
A^{3} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}
$$

\n
$$
A^{4} = I
$$

\n
$$
B^{2} = I
$$

\n
$$
AB = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}
$$

\n
$$
A^{2}B = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}
$$

\n
$$
A^{3}B = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} = BA
$$

Since G is a group containing A and B , then by closure G must contain the matrices $I, A, A², A³, B, AB, A²B, A³B,$ and we now see that these are all distinct. We claim that in fact, these 8 matrices form a group, i.e. $G = \{I, A, A^2, A^3, B, AB, A^2B, A^3B\}$. This is most easily seen using a Cayley table:

		$\begin{array}{ccccccccc} & & I & & A & & A^2 & & A^3 & & B & & AB & & A^2B & & A^3B \end{array}$		
		I I A A^2 A^3 B AB A^2B A^3B		
		$A \quad A \quad A^2 \quad A^3 \quad I \quad AB \quad A^2B \quad A^3B \quad B$		
		A^2 A^2 A^3 I A^2B A^3B B AB		
		A^3 A^3 I A A^2 A^3B B AB A^2B		
		B B A^3B A^2B AB I A^3 A^2 A		
		$AB \parallel AB$ B A^3B A^2B A I A^3 A^2		
		$A^2B \parallel A^2B \parallel AB \parallel B \parallel B \parallel A^3B \parallel A^2 \parallel A \parallel I \parallel A^3$		
		A^3B A^3B A^2B AB B A^3 A^2 A I		

The entry in the X^{th} row and Y^{th} column is XY, and each was computed using the relations given above: $A^4 = B^2 = I$ and $A^3B = BA$. It is clear from the table that the set $\{I, A, A^2, A^3, B, AB, A^2B, A^3B\}$ is closed under matrix multiplication and so the finite subgroup test implies it is a group. Thus, the smallest group containing A and B is $G = \{I, A, A^2, A^3, B, AB, A^2B, A^3B\}.$

Isomorphism Exercise 3: Let

$$
A = \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right) \text{ and } B = \left(\begin{array}{cc} 0 & i \\ i & 0 \end{array}\right).
$$

As in Exercise 2, we begin by computing:

$$
A^{2} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}
$$

\n
$$
A^{3} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}
$$

\n
$$
A^{4} = I
$$

\n
$$
B^{2} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = A^{2}
$$

\n
$$
B^{3} = \begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix}
$$

\n
$$
B^{4} = I
$$

\n
$$
AB = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} = B^{3}A
$$

\n
$$
A^{2}B = B^{3}
$$

\n
$$
A^{3}B = \begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix} = AB^{3}
$$

Since G is a group containing A and B , then by closure G must contain the matrices $I, A, A², A³, B, B³, AB, A³B, and we now see that these are all distinct. We claim that$ in fact, these 8 matrices form a group, i.e. $G = \{I, A, A^2, A^3, B, B^3, AB, A^3B\}$. This is most easily seen using a Cayley table:

	I			$A \tA^2 \tA^3 \tB \tB^3$			AB	A^3B
				\overline{A} $\overline{A^2}$ $\overline{A^3}$ \overline{B} $\overline{B^3}$			\overline{AB}	$\overline{A^3B}$
		$A \parallel A \parallel A^2$		A^3 I	AB	A^3B		B^3 B
A^2		$A^2 \qquad A^3 \qquad I \qquad A \qquad B^3$				A^3B	\overline{B}	AB
A^3		A^3 I A^2			A^3B	AB	\overline{B}	B^3
	$B \mid B$	A^3B	B^3		$AB \t A^2 \t I$		\overline{A}	A^3
B^3	$\mid B^3$	AB	\overline{B}		A^3B I	A^2		A^3 A
	R	\boldsymbol{B}	A^3B	B^3	A^3	A	A^2 <i>I</i>	
A^3B		A^3B B^3	AB	B	A		A^3 <i>I</i>	

The entry in the X^{th} row and Y^{th} column is XY , and each was computed using the relations given above. It is clear from the table that the set $\{I, A, A^2, A^3, B, B^3, AB, A^3B\}$ is closed under matrix multiplication and so the finite subgroup test implies it is a group. Thus, the smallest group containing A and B is $G = \{I, A, A^2, A^3, B, B^3, AB, A^3B\}.$

G is not isomorphic to D_4 because D_4 has only 2 elements of order 4 (R_{90} and R_{270}) whereas G has at least 3 elements of order $4(A, B, A)$. And G is not isomorphic to \mathbb{Z}_8 because G is not cyclic (every element has order 1, 2 or 4).

Isomorphism Exercise 4: Let $H \leq \mathbb{Z}$, $H \neq \{0\}$. Since \mathbb{Z} is cyclic, we know that H is cyclic as well. Write $H = \langle k \rangle, k \in \mathbb{Z}^+$. Define $f : \mathbb{Z} \to H$ by $f(n) = nk$. It is clear that f is onto. If $f(m) = f(n)$ then $mk = nk$ and, since $k \neq 0$, $m = n$. Thus f is one-to-one. Finally, we see that

$$
f(m + n) = (m + n)k = mk + nk = f(m) + f(n)
$$

proving that f preserves operations. It follows that f is an isomorphism and hence that $\mathbb{Z} \cong H$. Since H was arbitrary, we conclude that \mathbb{Z} is isomorphic to all of its nontrivial subgroups.