Automorphisms

Exercise 1. Consider the set of all *continuous* automorphisms of \mathbb{R} ,

$$\operatorname{Aut}_c(\mathbb{R}) = \{ f \in \operatorname{Aut}(\mathbb{R}) \mid f \text{ is continuous} \}.$$

- (a) Show that $\operatorname{Aut}_c(\mathbb{R})$ is a subgroup of $\operatorname{Aut}(\mathbb{R})$.
- (b) Let $\phi \in \operatorname{Aut}_c(\mathbb{R})$. Show that $\phi(x) = x\phi(1)$ for all $x \in \mathbb{R}$. [Hint: Show that the equality holds for all $x \in \mathbb{Q}$ and then use continuity to establish it for general x.]
- (c) Use part (b) to show that $\operatorname{Aut}_c(\mathbb{R}) \cong \mathbb{R}^{\times}$.

Exercise 2. Let $\phi: G \to H$ be an isomorphism between the groups G and H. Show that the function $\hat{\phi}: \operatorname{Aut}(G) \to \operatorname{Aut}(H)$ defined by

$$\hat{\phi}(f) = \phi \circ f \circ \phi^{-1}$$

for all $f \in Aut(G)$ is an isomorphism.