Homework #8 Solutions

p 132, #10 (=) Suppose that « is an automorphism of G. Let a,b € G. Then
b la™! = (ab)™ = alab) = a(a)a(d) =a b !

which implies that ab = ba. Since a,b € G were arbitrary we conclude that G is abelian.
(<) Suppose that G is abelian. Let a,b € G. If a(a) = a(b) then we have

at=p"1

which implies that a = b, proving that « is one-to-one. Given any a € G, we know that
a”! € G and
ala) =@ =a

which proves that « is onto. Finally, if a,b € G then, since G is abelian,
a(ab) = (ab) ' =bta =a b = afa)a(b)

so that «a is operation preserving. Therefore, « is an automorphism of G.

p 132, #12 Let H = Z; and G = Zy. Since |G| # |H|, we know that H 2 G. However
Aut(Z7) 2 U(7) = Zg

and

I

Aut(Zg) U(g) = ZG

so that Aut(H) = Aut(G).

p 134, #30 Let the mapping in question be denoted by s. That is, s : G — G is given by
s(g) = g*. Let g,h € G. Since G is abelian we have

s(gh) = (gh)* = g°h* = s(g)s(h)

which shows that s preserves operations. In order to show that s is an automorphism of G it
remains to show that s is one-to-one and onto. Since G is finite, it suffices to show that s is
one-to-one. So suppose that g, h € G and s(g) = s(h). Then, by the definition of s, we have
g* = h? or g?h™? = e. Again using the fact that G is abelian we have (gh™!)? = e. Since G
has no element of order it must be that gh~! = e. This implies that ¢ = h, proving that s
is one-to-one, completing the proof that s is an automorphism of G.

If we let G = Z then for any n € Z we have s(n) = 2n, so that the image of s consists
only of even integers. It follows that s is not onto and hence is not an automorphism of Z.



Automorphism Exercise 1.

(b) Let ¢ € Aut.(R). The proof given in Homework #7 (word for word) shows that ¢(r) =
r¢(1) for all € Q. Let € R. Then there is a sequence 11,79, 73, . .. of rational numbers so
that r,, — x as n — co. By the continuity of ¢ and what we’ve shown so far

6(x) = lim 6(ra) = lim ra6(1) = (lim r, ) 6(1) = 26(1)
which is what we needed to show.

(a) We use part (b) and the two step subgroup test. First of all, Aut.(R) # () since the
identity function 1g(z) = x is a continuous automorphism of R. Let ¢, € Aut.(R). Since ¢
and v are both automorphisms of R, we know that ¢ o1 is also an automorphism of R. Since
the composition of continuous functions is continuous, we also know that ¢ o) is continuous.
It follows that ¢ o) € Aut.(R). We know that ¢! is an automorphism of R, but it remains
to show that ¢! is also continuous. By part (b), ¢(z) = x¢(1) and since ¢ is one-to-one,
#(1) # 0. Therefore, ¢! is given by

oM (z) = (¢(1) '@

which we know is a continuous function on R. It follows that ¢! € Aut.(R). Therefore, by
the two-step subgroup test, Aut.(R) is a subgroup of Aut(R).
(c) Given ¢ € Aut.(R), we know that ¢(1) € R* since ¢ is one-to-one and ¢(0) = 0. It
follows that the function

F: Aut.(R) — R*

defined by F(¢) = ¢(1) is well-defined. We claim that F' is, in fact, an isomorphism.
If ¢, € Aut.(R) and F(¢) = F(¢) then ¢(1) = ¢(1), by the definition of F. But, by
part (b), this implies that for any = € R we have

¢(x) = 2¢(1) = wp(1) = (x)

and so ¢ = 1. Hence, F' is one-to-one.

Given ¢ € R*| define ¢(x) = cx. Since ¢ # 0, ¢ is easily seen to be one-to-one, onto and
continuous. We also see that ¢(x +y) = c(z +y) = cx + cy = ¢(x) + ¢(y) for any =,y € R.
This shows that ¢ € Aut.(R) and we see that

which proves that F' is onto.
Finally, if ¢, ¢ € Aut.(R) then, by part (b) again,

F(pot) = (doy)(1) =o¥(1) =»(1)¢(1) = ¢(1)v(1) = F(¢)F(¢)

proving that F' is operation preserving.
We conclude that F' is an isomorphism and hence that Aut.(R) = R*.



Automorphism Exercise 2. We first show that ngS is well-defined, i.e. that given f €
Aut(G) we have ¢(f) € Aut(H). This is not difficult, but merits a quick argument. It is
clear that ¢ o f o ¢! is a function from H to H and since ¢, f and ¢! are all one-to-one
and onto, so is their composition. Finally, if a,b € H then, since ¢, f and ¢! preserve

operations:

(pofod)ab) = ¢(f(¢7"(ab)))
= ¢(f(¢"(a)o (1))
= o(f(67'(a))f(¢7'(b)))
= o(f(0 " (a))o(f(¢7'(b)))
= (pofod)(a)(¢o fos )b

That is, ¢ o f¢~! preserves operations. Therefore gz@(f =¢o fo¢p ! e Aut(R), so that qg is
well-defined. X

Now that we know that ¢ is a well-defined function we proceed to show it is an isomor-
phism. Let f, g € Aut(GQ). If ¢(f) = ¢(g) then po fop™ = pogop~!. Composing on the left
by ¢~! and on the right by ¢ we find that f = g, so that ¢ is one-to-one. Let h € Aut(H).
Then, the argument used above shows that f = ¢ 1 oho¢ € Aut(G) (since o' : H — G is
an isomorphism) and we see that

(f)=dofod =0 ohodod™ =h

so that g5 is also onto. Finally

~

d(fog)=¢ofogodp=¢ofop oggod™ =a(f)od(g)

proving that gg is operation preserving.
Since ¢ : Aut(G) — Aut(H) is one-to-one, onto and preserves operations it is an isomor-
phism, i.e.
Aut(G) = Aut(H).

p 148, #2 Since |H| = 4 and |S4| = 4! = 24, Lagrange’s Theorem tells us that the number

of left cosets of H in Sy is

S 24
[Si: H) = [ = =6

p 148, #6 Let a,b € Z. Then a + H = b+ H if and only if b — a € H which is true if and
only if b — a is a multiple of n. That is, a + H = b+ H if and only if @ mod n = b mod n.
Since the remainders {0,1,2,3,...,n — 1} are all distinct modn and every integer modn is
equal to exactly one of these, we see that there are n distinct (left) cosets of H in Z and

they are
H1+H2+H3+H,...,(n—1)+H.



p 148, #8 If |a| = 15 then

Hence (@] 5
[<@>3<a>]=w:§:5~

Therefore (a®) has 5 cosets in (a) and it is easy to check that they are

(), a(a®),a*(a”), a*(a’), a*(a”).

p 148, #10 Let H be any subgroup of G containing a and b. Since |al, |b| # 1 are distinct
and divide |G| = 155, Lagrange’s Theorem implies, without loss of generality, that we must
be in one of the following situations.

Case 1. |a| = 155. In this case G = (a) < H < G so that H = G as desired.

Case 2. |a| = 31 and |b| = 5. Since the order of any element must divide the order of the
group, it must be that 31 and 5 both divide |H|. Therefore 155, the least common multiple
of 31 and 5, must divide |H|. Since H < G, we have

155 < |H| < |G| = 155
so that |H| = 155. It follows that H = G.

p 148, #14 Since K < H, Lagrange’s Theorem implies that 42 = |K| divides (but does
not equal) |H|. Since H < G, Lagrange’s Theorem implies that |H| divides (but does not
equal) 420 = |G|. Since 420 = 2 - 5 - 42, the only possibilities for |H| are

|H| = 84 or 210.

p 148, #16 Let n > 2 be an integer and let a € Z. If (a,n) = 1 then we know that
(a mod n,n) = 1 so that amodn € U(n). Since |U(n)| = ¢(n), the fourth corollary to
Lagrange’s Theorem implies that

a®™ mod n = (a mod n)*™ mod n =1 mod n = 1.



