
Homework #8 Solutions

p 132, #10 (⇒) Suppose that α is an automorphism of G. Let a, b ∈ G. Then

b−1a−1 = (ab)−1 = α(ab) = α(a)α(b) = a−1b−1

which implies that ab = ba. Since a, b ∈ G were arbitrary we conclude that G is abelian.
(⇐) Suppose that G is abelian. Let a, b ∈ G. If α(a) = α(b) then we have

a−1 = b−1

which implies that a = b, proving that α is one-to-one. Given any a ∈ G, we know that
a−1 ∈ G and

α(a−1) = (a−1)−1 = a

which proves that α is onto. Finally, if a, b ∈ G then, since G is abelian,

α(ab) = (ab)−1 = b−1a−1 = a−1b−1 = α(a)α(b)

so that α is operation preserving. Therefore, α is an automorphism of G.

p 132, #12 Let H = Z7 and G = Z9. Since |G| 6= |H|, we know that H 6∼= G. However

Aut(Z7) ∼= U(7) ∼= Z6

and
Aut(Z9) ∼= U(9) ∼= Z6

so that Aut(H) ∼= Aut(G).

p 134, #30 Let the mapping in question be denoted by s. That is, s : G→ G is given by
s(g) = g2. Let g, h ∈ G. Since G is abelian we have

s(gh) = (gh)2 = g2h2 = s(g)s(h)

which shows that s preserves operations. In order to show that s is an automorphism of G it
remains to show that s is one-to-one and onto. Since G is finite, it suffices to show that s is
one-to-one. So suppose that g, h ∈ G and s(g) = s(h). Then, by the definition of s, we have
g2 = h2 or g2h−2 = e. Again using the fact that G is abelian we have (gh−1)2 = e. Since G
has no element of order it must be that gh−1 = e. This implies that g = h, proving that s
is one-to-one, completing the proof that s is an automorphism of G.

If we let G = Z then for any n ∈ Z we have s(n) = 2n, so that the image of s consists
only of even integers. It follows that s is not onto and hence is not an automorphism of Z.



Automorphism Exercise 1.
(b) Let φ ∈ Autc(R). The proof given in Homework #7 (word for word) shows that φ(r) =
rφ(1) for all r ∈ Q. Let x ∈ R. Then there is a sequence r1, r2, r3, . . . of rational numbers so
that rn → x as n→∞. By the continuity of φ and what we’ve shown so far

φ(x) = lim
n→∞

φ(rn) = lim
n→∞

rnφ(1) =
(

lim
n→∞

rn

)
φ(1) = xφ(1)

which is what we needed to show.
(a) We use part (b) and the two step subgroup test. First of all, Autc(R) 6= ∅ since the
identity function 1R(x) = x is a continuous automorphism of R. Let φ, ψ ∈ Autc(R). Since φ
and ψ are both automorphisms of R, we know that φ◦ψ is also an automorphism of R. Since
the composition of continuous functions is continuous, we also know that φ◦ψ is continuous.
It follows that φ ◦ψ ∈ Autc(R). We know that φ−1 is an automorphism of R, but it remains
to show that φ−1 is also continuous. By part (b), φ(x) = xφ(1) and since φ is one-to-one,
φ(1) 6= 0. Therefore, φ−1 is given by

φ−1(x) = (φ(1))−1 x

which we know is a continuous function on R. It follows that φ−1 ∈ Autc(R). Therefore, by
the two-step subgroup test, Autc(R) is a subgroup of Aut(R).
(c) Given φ ∈ Autc(R), we know that φ(1) ∈ R× since φ is one-to-one and φ(0) = 0. It
follows that the function

F : Autc(R) → R×

defined by F (φ) = φ(1) is well-defined. We claim that F is, in fact, an isomorphism.
If φ, ψ ∈ Autc(R) and F (φ) = F (ψ) then φ(1) = ψ(1), by the definition of F . But, by

part (b), this implies that for any x ∈ R we have

φ(x) = xφ(1) = xψ(1) = ψ(x)

and so φ = ψ. Hence, F is one-to-one.
Given c ∈ R×, define φ(x) = cx. Since c 6= 0, φ is easily seen to be one-to-one, onto and

continuous. We also see that φ(x+ y) = c(x+ y) = cx+ cy = φ(x) + φ(y) for any x, y ∈ R.
This shows that φ ∈ Autc(R) and we see that

F (φ) = φ(1) = c · 1 = c

which proves that F is onto.
Finally, if φ, ψ ∈ Autc(R) then, by part (b) again,

F (φ ◦ ψ) = (φ ◦ ψ)(1) = φ(ψ(1)) = ψ(1)φ(1) = φ(1)ψ(1) = F (φ)F (ψ)

proving that F is operation preserving.
We conclude that F is an isomorphism and hence that Autc(R) ∼= R×.



Automorphism Exercise 2. We first show that φ̂ is well-defined, i.e. that given f ∈
Aut(G) we have φ̂(f) ∈ Aut(H). This is not difficult, but merits a quick argument. It is
clear that φ ◦ f ◦ φ−1 is a function from H to H and since φ, f and φ−1 are all one-to-one
and onto, so is their composition. Finally, if a, b ∈ H then, since φ, f and φ−1 preserve
operations:

(φ ◦ f ◦ φ−1)(ab) = φ(f(φ−1(ab)))

= φ(f(φ−1(a)φ−1(b)))

= φ(f(φ−1(a))f(φ−1(b)))

= φ(f(φ−1(a)))φ(f(φ−1(b)))

= (φ ◦ f ◦ φ−1)(a)(φ ◦ f ◦ φ−1)(b).

That is, φ ◦ fφ−1 preserves operations. Therefore φ̂(f) = φ ◦ f ◦ φ−1 ∈ Aut(R), so that φ̂ is
well-defined.

Now that we know that φ̂ is a well-defined function we proceed to show it is an isomor-
phism. Let f, g ∈ Aut(G). If φ̂(f) = φ̂(g) then φ◦f ◦φ−1 = φ◦g◦φ−1. Composing on the left

by φ−1 and on the right by φ we find that f = g, so that φ̂ is one-to-one. Let h ∈ Aut(H).
Then, the argument used above shows that f = φ−1 ◦ h ◦ φ ∈ Aut(G) (since φ−1 : H → G is
an isomorphism) and we see that

φ̂(f) = φ ◦ f ◦ φ−1 = φ ◦ φ−1 ◦ h ◦ φ ◦ φ−1 = h

so that φ̂ is also onto. Finally

φ̂(f ◦ g) = φ ◦ f ◦ g ◦ φ−1 = φ ◦ f ◦ φ−1 ◦ φg ◦ φ−1 = φ̂(f) ◦ φ̂(g)

proving that φ̂ is operation preserving.
Since φ̂ : Aut(G) → Aut(H) is one-to-one, onto and preserves operations it is an isomor-

phism, i.e.
Aut(G) ∼= Aut(H).

p 148, #2 Since |H| = 4 and |S4| = 4! = 24, Lagrange’s Theorem tells us that the number
of left cosets of H in S4 is

[S4 : H] =
|S4|
|H|

=
24

4
= 6.

p 148, #6 Let a, b ∈ Z. Then a+H = b+H if and only if b− a ∈ H which is true if and
only if b − a is a multiple of n. That is, a +H = b +H if and only if a mod n = b mod n.
Since the remainders {0, 1, 2, 3, . . . , n− 1} are all distinct modn and every integer modn is
equal to exactly one of these, we see that there are n distinct (left) cosets of H in Z and
they are

H, 1 +H, 2 +H, 3 +H, . . . , (n− 1) +H.



p 148, #8 If |a| = 15 then

|a5| = 15

(15, 5)
=

15

5
= 3.

Hence

[〈a〉 : 〈a5〉] =
|〈a〉|
|〈a5〉|

=
15

3
= 5.

Therefore 〈a5〉 has 5 cosets in 〈a〉 and it is easy to check that they are

〈a5〉, a〈a5〉, a2〈a5〉, a3〈a5〉, a4〈a5〉.

p 148, #10 Let H be any subgroup of G containing a and b. Since |a|, |b| 6= 1 are distinct
and divide |G| = 155, Lagrange’s Theorem implies, without loss of generality, that we must
be in one of the following situations.

Case 1. |a| = 155. In this case G = 〈a〉 ≤ H ≤ G so that H = G as desired.
Case 2. |a| = 31 and |b| = 5. Since the order of any element must divide the order of the

group, it must be that 31 and 5 both divide |H|. Therefore 155, the least common multiple
of 31 and 5, must divide |H|. Since H ≤ G, we have

155 ≤ |H| ≤ |G| = 155

so that |H| = 155. It follows that H = G.

p 148, #14 Since K < H, Lagrange’s Theorem implies that 42 = |K| divides (but does
not equal) |H|. Since H < G, Lagrange’s Theorem implies that |H| divides (but does not
equal) 420 = |G|. Since 420 = 2 · 5 · 42, the only possibilities for |H| are

|H| = 84 or 210.

p 148, #16 Let n ≥ 2 be an integer and let a ∈ Z. If (a, n) = 1 then we know that
(a mod n, n) = 1 so that a mod n ∈ U(n). Since |U(n)| = φ(n), the fourth corollary to
Lagrange’s Theorem implies that

aφ(n) mod n = (a mod n)φ(n) mod n = 1 mod n = 1.


