
Homework #9 Solutions

p 149, #18 Let n > 1. Then n−1 ∈ U(n) and (n−1)2 = n2−2n+1 so that (n−1)2 mod n =
1. Since n − 1 6= 1, this means that |n − 1| = 2 in U(n). As the order of any element in a
group must divide the order of that group, it follows that 2 must divide the order of U(n),
i.e. the order of U(n) is even.

p 149, #22 Let a ∈ G, a 6= e. Then 〈a〉 is a nontrivial subgroup of G. Since G has no
proper nontrivial subgroup, it must be that G = 〈a〉. That is, G is cyclic. If G is infinite
then G ∼= Z, which we know has infinitely many subgroups, and this is a contradiction.
Therefore, G must be a finite cyclic group. By the fundamental theorem of cyclic groups,
the subgroups of G correspond to the divisors of its order. Since G has no subgroups other
than {e} and itself, it must be that |G| is divisible only by 1 and itself, i.e. |G| is prime.

p 149, #26

Theorem 1. Let G be a finite group with even order. Then G has an element of order 2.

Proof. Since any element and its inverse have the same order, we can pair each element of
G with order larger than two with its (distinct) inverse, and hence there must be an even
number of elements of G with order greater than two. However, |G| is even and so G has
an odd number of nonidentity elements. It follows that G must have an element with order
2.

The solution to the problem now follows from the theorem.

p 149, #28 Let H ≤ Q and suppose [Q : H] = n < ∞. For any r ∈ Q consider the cosets

H, r + H, 2r + H, . . . , nr + H.

Since H has only n distinct cosets, two of these must be the same. That is, there must be
i, j with 0 ≤ i < j ≤ n so that ia + H = ja + H, i.e. a(j − i) ∈ H. Since 1 ≤ j − i ≤ n,
we have proven that for any rational r there is an integer k, 1 ≤ k ≤ n, so that kr ∈ H.
Let N = n!. Since every number between 1 and n divides N , we find that for any r ∈ Q,
Nr ∈ H. But if r is rational then so is r/N and so

r = N
( r

N

)
∈ H

which means H = Q. The conclusion follows.

p 149, #30 Let H be a subgroup of Dn with odd order. Since every flip in Dn has order 2,
and 2 does not divide |H|, Lagrange’s theorem tells us that H can contain no flips. Therefore,



H consists entirely of rotations. But the rotations in Dn form a cyclic subgroup, generated
by R360/n. So we have

H ≤ 〈R360/n〉
and since every subgroup of a cyclic group is cyclic, we conclude that H is cyclic.

p 149, #34 Follows from the theorem proven in #26.

p 150, #36 For convenience we set φn(a)an for all a ∈ G. Since G is abelian, for any
x, y ∈ G we have

φn(xy) = (xy)n = xnyn = φn(x)φn(y)

which shows that φn is operation preserving. This is the easy part. Now we need to show
that φn is one-to-one and onto. Since G is finite, it suffices to show only that φn is one-to-one.
So suppose that φn(x) = φn(y) for some x, y ∈ G. Then xn = yn or, since G is abelian,

xny−n = (xy−1)n = e.

As (n, |G|) = 1, problem #19 allows us to conclude that xy−1 = e, and hence that x = y.
This proves that φn is one-to-one and, as noted above, conclude that proof that φn ∈ Aut(G).

p 150, #38 Since H ∩K is a subgroup of both H and K, Lagrange’s theorem tells us that
|H ∩ K| must be divide both |H| = pq and |K| = qr. As p, q, r are distinct primes, this
means that |H ∩ K| = 1 or q. Appealing to Lagrange’s theorem again, we find that this
means [H : H ∩K] = pq or p. We must eliminate the first case.

Let a ∈ H. We claim that H ∩ aK = a(H ∩ K). One inclusion is obvious: we have
a(H ∩K) ⊂ aK and since a ∈ H we have a(H ∩K) ⊂ H. Hence a(H ∩K) ⊂ H ∩ aK. Now
for the reverse. Let h ∈ H ∩ aK. Then h = ak with k ∈ K and so k = a−1h. Since a ∈ H,
we find that k ∈ H, which means that k ∈ H ∩K. Hence, h = ak ∈ a(H ∩K) proving that
H ∩ aK ⊂ a(H ∩K).

The fact that H ∩ aK = a(H ∩ K) for all a ∈ H tells us that each left coset of H ∩ K
in H comes from a left coset of K in G (in fact, a coset of the form aK with a ∈ H). In
particular, this means that the number of left cosets of H ∩K in H is less than or equal to
the number of cosets of K in G, i.e.

[H : H ∩K] ≤ [G : K] =
|G|
|K|

= p.

This means that the case [H : H ∩ K] = pq is impossible, leaving us to conclude that
[H : H ∩K] = p. Lagrange’s theorem (again!) then gives |H ∩K| = q.

Additional Problem. We use the one-step subgroup test. Since e ∈ H, e = aea−1 ∈
aHa−1, so that aHa−1 6= ∅. Furthermore, if x = ah1a

−1, y = ah2a
−1 ∈ aHa−1 (h1, h2 ∈ H),

then
xy−1 = (ah1a

−1)(ah2a
−1)−1 = (ah1a

−1)(ah−1
2 a−1) = ah1h

−1
2 a−1 ∈ aHa−1



since h1h
−1
2 ∈ H. Therefore, aHa−1 passes the one-step subgroup test.


