Homework #9 Solutions

p 149, #18 Let n > 1. Thenn—1 € U(n) and (n—1)? = n?>—2n+1 so that (n—1)> mod n =
1. Since n — 1 # 1, this means that |n — 1| = 2 in U(n). As the order of any element in a
group must divide the order of that group, it follows that 2 must divide the order of U(n),
i.e. the order of U(n) is even.

p 149, #22 Let a € G, a # e. Then (a) is a nontrivial subgroup of G. Since G has no
proper nontrivial subgroup, it must be that G = (a). That is, G is cyclic. If G is infinite
then G = 7Z, which we know has infinitely many subgroups, and this is a contradiction.
Therefore, G must be a finite cyclic group. By the fundamental theorem of cyclic groups,
the subgroups of GG correspond to the divisors of its order. Since GG has no subgroups other
than {e} and itself, it must be that |G| is divisible only by 1 and itself, i.e. |G| is prime.

p 149, #26
Theorem 1. Let G be a finite group with even order. Then G has an element of order 2.

Proof. Since any element and its inverse have the same order, we can pair each element of
G with order larger than two with its (distinct) inverse, and hence there must be an even
number of elements of G with order greater than two. However, |G| is even and so G has
an odd number of nonidentity elements. It follows that G must have an element with order
2. O

The solution to the problem now follows from the theorem.

p 149, #28 Let H < Q and suppose [Q : H] =n < oo. For any r € Q consider the cosets
Hr+H?2r+H,....,nr+ H.

Since H has only n distinct cosets, two of these must be the same. That is, there must be
i,7 with 0 <i < j <nsothatia+ H = ja+ H, ie a(j—i) € H. Since 1 < j—1i <mn,
we have proven that for any rational r there is an integer k£, 1 < k < n, so that kr € H.
Let N = n!. Since every number between 1 and n divides N, we find that for any r € Q,
Nr € H. But if r is rational then so is /N and so
r
r=N(5)eH

which means H = Q. The conclusion follows.

p 149, #30 Let H be a subgroup of D,, with odd order. Since every flip in D,, has order 2,
and 2 does not divide |H |, Lagrange’s theorem tells us that H can contain no flips. Therefore,



H consists entirely of rotations. But the rotations in D,, form a cyclic subgroup, generated

by Rsgo/m- So we have
H < (Rseo/m)

and since every subgroup of a cyclic group is cyclic, we conclude that H is cyclic.
p 149, #34 Follows from the theorem proven in #26.

p 150, #36 For convenience we set ¢,(a)a” for all a € G. Since G is abelian, for any
x,y € G we have

On(zy) = (2y)" = 2"Y" = dn(x)Pn(y)
which shows that ¢, is operation preserving. This is the easy part. Now we need to show
that ¢, is one-to-one and onto. Since G is finite, it suffices to show only that ¢,, is one-to-one.
So suppose that ¢,(x) = ¢, (y) for some z,y € G. Then 2" = y™ or, since G is abelian,

2y = (zy ) =

As (n,|G]) = 1, problem #19 allows us to conclude that xy~! = e, and hence that z = y.
This proves that ¢, is one-to-one and, as noted above, conclude that proof that ¢,, € Aut(G).

p 150, #38 Since H N K is a subgroup of both H and K, Lagrange’s theorem tells us that
|H N K| must be divide both |H| = pq and |K| = gr. As p,q,r are distinct primes, this
means that |H N K| = 1 or ¢q. Appealing to Lagrange’s theorem again, we find that this
means [H : HN K] = pq or p. We must eliminate the first case.

Let a € H. We claim that H NaK = a(H N K). One inclusion is obvious: we have
a(HNK) C aK and since a € H we have a(HNK) C H. Hence a(HNK) C HNaK. Now
for the reverse. Let h € HNaK. Then h = ak with k € K and so k = a'h. Since a € H,
we find that k € H, which means that k € H N K. Hence, h = ak € a(H N K) proving that
HnNaK C a(HNK).

The fact that H NaK = a(H N K) for all a € H tells us that each left coset of H N K
in H comes from a left coset of K in G (in fact, a coset of the form aK with a € H). In
particular, this means that the number of left cosets of H N K in H is less than or equal to
the number of cosets of K in G, i.e.

[H'HOK]<[G'K]—|£|—
: <|G:K|= =p
K]
This means that the case [H : H N K] = pq is impossible, leaving us to conclude that
[H : HN K] = p. Lagrange’s theorem (again!) then gives |[H N K| = gq.

Additional Problem. We use the one-step subgroup test. Since e € H, e = aea™' €
aHa™', so that aHa™! # (). Furthermore, if x = ahia™,y = ahoa™ € aHa™* (hy, hy € H),
then

ryt = (ahia ) (ahea™)™! = (ahia V) (ahyta™t) = ahihyta™ € aHa™



since hih,* € H. Therefore, aHa™"' passes the one-step subgroup test.



