Practice Problem Solutions

1. Despite its appearance, this is a problem dealing exclusively with cosets and not using Lagrange's Theorem. We start with the following observation. Let $a, b \in K$ and suppose that $a(H \cap K)=b(H \cap K)$. Then $a^{-1} b \in H \cap K \leq H$ and so $a H=b H$. It follows that the map

$$
\begin{aligned}
\{a(H \cap K) \mid a \in K\} & \rightarrow\{a H \mid a \in H \vee K\} \\
a(H \cap K) & \mapsto a H
\end{aligned}
$$

is well-defined, i.e. does not depend on the choice of coset representative a. Moreover, this map is one-to-one. For if $a, b \in K$ and $a H=b H$ then $a^{-1} b \in H$ and since $a^{-1} b \in K$ we have $a^{-1} b \in H \cap K$ so that $a(H \cap K)=b(H \cap K)$. It follows that the number of cosets in the set on the left above (which is $[K: H \cap K]$) is less than or equal to the number of cosets in the set on the right above (which is $[H \vee K: H]$). That is

$$
[K: H \cap K] \leq[H \vee K: H]
$$

2. In a recent homework assignment, we showed that the subgroup

$$
G=\left\{\sigma \in S_{4} \mid \sigma(4)=4\right\}
$$

is isomorphic to S_{3}. There's nothing particularly special about the integer 4, and the same technique can be used to show that the three subgroups

$$
\left\{\sigma \in S_{4} \mid \sigma(i)=i\right\}
$$

$i=1,2,3$ are all also isomorphic to S_{3}.
3. Let $(a b)$ be a transposition in S_{n}. If $a=1$ or $b=1$ then ($a b$) is already among (12), (13), $\ldots,(1 n)$. So suppose that $a, b \neq 1$. Then, since $a \neq b$, it is trivial to verify that

$$
(a b)=(1 a)(1 b)(1 a) .
$$

It follows that any transposition can be written using only the transpositions (12), (13), ..., (1n), and since any permutation can be written as a product of transpositions, that any element of S_{n} can be written using only the transpositions (12), (13), $\ldots,(1 n)$.
4. (a) Suppose that $\sigma \in S_{n}$ is a 3-cycle. Then σ has order 3. If $\sigma \notin H$ then, since $\sigma=\left(\sigma^{2}\right)^{2}$, we must have $\sigma^{2} \notin H$ as well. That is, $\sigma H \neq H$ and $\sigma^{2} H \neq H$. But H has index 2 and so only has two cosets in S_{n}. Therefore it must be that $\sigma H=\sigma^{2} H$. But this can only happen if $\sigma=\sigma^{-1} \sigma^{2} \in H$, which is a contradiction! Therefore it must be the case that $\sigma \in H$. Since σ was an arbitrary 3 -cycle, we conclude that H contains all 3 -cycles.
(b) If $H \leq S_{n}$ has index 2, then part (a) tells us that H contains every 3-cycle. Since every element of A_{n} is a product of 3-cycles, it follows that $A_{n} \leq H$. But $\left[S_{n}: A_{n}\right]=2=\left[S_{n}: H\right]$ and so $H=A_{n}$ by the following exercise.
5. We must make the additional assumption that G is finite. In this case, Lagrange's Theorem tells us that

$$
\frac{|G|}{|H|}=[G: H]=[G: K]=\frac{|G|}{|K|}
$$

so that $|H|=|K|$. Since $H \leq K$ and the two sets are finite, we conclude immediately that $H=K$.
6. Choose $x \in H a \cap H b$. Write $x=h_{1} a=h_{2} b$ for some $h_{1}, h_{2} \in H$. Then $a=h_{1}^{-1} x$. Let $y \in H a$. Then $y=h a$ for some $h \in H$ and so

$$
y=h a=h h_{1}^{-1} x=h h_{1}^{-1} h_{2} b \in H b .
$$

y being an arbitrary element of $H a$, we conclude that $H a \subset H b$. A similar argument shows that $H b \subset H a$ as well, so that $H a=H b$.
7. Let G be a group of order 110. Let $x \in G, x \neq e$. Then $|x| \neq 1$ and divides $110=2 \cdot 5 \cdot 11$. It follows that $|x|$ must be divisible by one of the primes 2,5 or 11. If this prime is p, then the cyclic subgroup $\langle x\rangle$ has a unique subgroup H of order p, which is also cyclic (by the Fundamental Theorem of Cyclic Groups). Since "being a subgroup of" is transitive, H is the cyclic subgroup of G we sought to prove existed.
8. Since $x^{\mid} G \mid=e$ for all $a \in G$, the exponent of a finite group must be finite (and $\leq|G|$). Let $n \in \mathbb{Z}^{+}$be the exponent of G and suppose that m has the property that $x^{m}=e$ for all $x \in G$. Write $m=q n+r$ with $q \in \mathbb{Z}$ and $0 \leq r<n$. Then, for any $x \in G$ we have

$$
x^{r}=x^{m-q n}=x^{m}\left(x^{-} q\right)^{n}=e e=e
$$

which contradicts the choice of n as the least positive integer with this property unless $r=0$. That is, if $x^{m}=e$ for all $x \in G$, then n divides m. Since $|G|$ has this property, we conclude that n divides $|G|$, i.e. the exponent of G divides $|G|$.
9. We know that the orders of elements in S_{5} are given by the least common multiples of
the terms in the possible partitions of 5 into positive integers. The partitions are

$$
\begin{aligned}
& 5=1+1+1+1+1 \\
& 5=2+1+1+1 \\
& 5=2+2+1 \\
& 5=3+1+1 \\
& 5=3+2 \\
& 5=4+1 \\
& 5=5
\end{aligned}
$$

and the orders (lcm's) are $1,2,3,4,5,6$. If $\sigma \in S_{5}$ then $\sigma^{n}=\epsilon$ if and only if n is a multiple of $|\sigma|$. Hence, if n is the exponent of S_{5} then n is divisible by all of the orders of the elements of S_{5}. The least positive integer with this property is the least common multiple of $1,2,3,4,5,6$ which is 60 .

As above, the orders of the elements in S_{6} are determined by the least common mutltiples of the terms in the possible partitions of 6 into positive integers. The partitions of 6 are

$$
\begin{aligned}
& 6=1+1+1+1+1+1 \\
& 6=2+1+1+1+1 \\
& 6=2+2+1+1 \\
& 6=2+2+2 \\
& 6=3+1+1+1 \\
& 6=3+2+1 \\
& 6=3+3 \\
& 6=4+1+1 \\
& 6=4+2 \\
& 6=5+1 \\
& 6=6
\end{aligned}
$$

The question is, which of these partitions correspond to elements of A_{6} ? Since an l-cycle can be written as a product of $l-1$ transpositions, a permutation with cycle structure corresponding to the partition $6=l_{1}+l_{2}+\cdots l_{k}$ can be written as the product of $\left(l_{1}-1\right)+$ $\left(l_{2}-1\right)+\cdots+\left(l_{k}-1\right)=6-k$ transpositions. Hence, the permutations with cycle structure corresponding to the partition $6=l_{1}+l_{2}+\cdots+l_{k}$ is even if and only if k is even. Therefore the orders of the elements of A_{6} are given by the lcm's of the terms in the partitions of 6 into an even number of parts. These are easily identified in the list above, and their lcm's are $1,2,3,4,5$. As above, it is the lcm of these orders that provide the exponent of A_{6}. Hence, the exponent of A_{6} is also 60 .
10. We will show that if p and q are distinct prime integers then $p\left(\mathbb{Q}^{\times}\right)^{2} \neq q\left(\mathbb{Q}^{\times}\right)^{2}$. Since there are infinitely many primes in \mathbb{Z}, this will suffice to prove that there are infinitely many cosets of $\left(\mathbb{Q}^{\times}\right)^{2}$ in \mathbb{Q}^{\times}.

So, suppose that p, q are distinct prime integers. We know that $p\left(\mathbb{Q}^{\times}\right)^{2}=q\left(\mathbb{Q}^{\times}\right)^{2}$ if and only if $p^{-1} q \in\left(\mathbb{Q}^{\times}\right)^{2}$ which happens if and only if there are non-zero integers a, b so that $p^{-1} q=(a / b)^{2}$, or $b^{2} q=a^{2} p$. However, this contradicts the fundamental theorem of arithmetic since q occurs an odd number of times in $b^{2} q$ but an even number of times in $a^{2} p$ (since $p \neq q$). We conclude that it is impossible to have $p\left(\mathbb{Q}^{\times}\right)^{2}=q\left(\mathbb{Q}^{\times}\right)^{2}$ and hence that each prime integers gives rise to a distinct coset of $\left(\mathbb{Q}^{\times}\right)^{2}$ in \mathbb{Q}^{\times}, which is what we sought to show.
11. If $\phi: \mathbb{Q}^{\times} \rightarrow \mathbb{R}^{\times}$is an isomorphism then $\phi(x)$ is a square if and only if x is a square. This is left as an exercise to the reader and is true of any group isomorphism. It follows from this that $\phi\left(\left(\mathbb{Q}^{\times}\right)^{2}\right)=\left(R^{\times}\right)^{2}$. But then we'd have

$$
\infty=\left[\mathbb{Q}^{\times}:\left(\mathbb{Q}^{\times}\right)^{2}\right]=\left[\phi\left(\mathbb{Q}^{\times}\right): \phi\left(\left(\mathbb{Q}^{\times}\right)^{2}\right)\right]=\left[\mathbb{R}^{\times}:\left(\mathbb{R}^{\times}\right)^{2}\right]=2 .
$$

Here we have used the facts that isomorphisms preserve indices of corresponding subgroups and that $\left[\mathbb{R}^{\times}:\left(\mathbb{R}^{\times}\right)^{2}\right]=2$, which was proven in class. The absurdity $\infty=2$ shows that the existence of ϕ is impossible and so $\mathbb{Q}^{\times} \not \not ⿻ \mathbb{R}^{\times}$.
12. Since the cycles (13579) and (268) are disjoint, the order of β^{2} is the 1 cm of their lengths, which is 15 . Therefore

$$
15=\left|\beta^{2}\right|=\frac{|\beta|}{(|\beta|, 2)} .
$$

Since $(|\beta|, 2)=1$ or 2 , we conclude that $|\beta|=15$ or 30 . It is not hard to see that 30 cannot be the order of an element of S_{9} and so it must be that $|\beta|=15$. But then $|\beta|=\left|\beta^{2}\right|$ so that $\langle\beta\rangle=\left\langle\beta^{2}\right\rangle$, which tells us that β is a power of β^{2}. Determining which power is easy enough: we need to find k so that $\beta^{2 k}=\beta$ or, equivalently, $\beta^{2 k-1}=\epsilon$. But this happens if and only if $15=|\beta|$ divides $2 k-1$. $k=8$ obviously satisfies this criterion. Therefore

$$
\beta=\beta^{2 \cdot 8}=\beta^{16}=(13579)^{16}(268)^{16}=(13579)^{1}(268)^{1}=(13579)(268)
$$

Here we have used the facts that (13579) and (268) commute and have orders 5 and 3, respectively.
13. We have seen that

$$
\operatorname{Aut}\left(\mathbb{Z}_{25}\right) \cong U(25)
$$

Moreover, it is straightforward to verify that $U(25)$ is cyclic of order 20 , so that $U(25) \cong \mathbb{Z}_{20}$. Hence

$$
\operatorname{Aut}\left(\operatorname{Aut}\left(\mathbb{Z}_{25}\right)\right) \cong \operatorname{Aut}(U(25)) \cong \operatorname{Aut}\left(\mathbb{Z}_{20}\right) \cong U(20)
$$

