
Practice Problem Solutions

1. Despite its appearance, this is a problem dealing exclusively with cosets and not using
Lagrange’s Theorem. We start with the following observation. Let a, b ∈ K and suppose
that a(H ∩K) = b(H ∩K). Then a−1b ∈ H ∩K ≤ H and so aH = bH. It follows that the
map

{a(H ∩K) | a ∈ K} → {aH | a ∈ H ∨K}
a(H ∩K) 7→ aH

is well-defined, i.e. does not depend on the choice of coset representative a. Moreover, this
map is one-to-one. For if a, b ∈ K and aH = bH then a−1b ∈ H and since a−1b ∈ K we have
a−1b ∈ H ∩K so that a(H ∩K) = b(H ∩K). It follows that the number of cosets in the set
on the left above (which is [K : H ∩K]) is less than or equal to the number of cosets in the
set on the right above (which is [H ∨K : H]). That is

[K : H ∩K] ≤ [H ∨K : H].

2. In a recent homework assignment, we showed that the subgroup

G = {σ ∈ S4 |σ(4) = 4}

is isomorphic to S3. There’s nothing particularly special about the integer 4, and the same
technique can be used to show that the three subgroups

{σ ∈ S4 |σ(i) = i},

i = 1, 2, 3 are all also isomorphic to S3.

3. Let (ab) be a transposition in Sn. If a = 1 or b = 1 then (ab) is already among
(12), (13), . . . , (1n). So suppose that a, b 6= 1. Then, since a 6= b, it is trivial to verify that

(ab) = (1a)(1b)(1a).

It follows that any transposition can be written using only the transpositions (12), (13), . . . , (1n),
and since any permutation can be written as a product of transpositions, that any element
of Sn can be written using only the transpositions (12), (13), . . . , (1n).

4. (a) Suppose that σ ∈ Sn is a 3-cycle. Then σ has order 3. If σ 6∈ H then, since σ = (σ2)2,
we must have σ2 6∈ H as well. That is, σH 6= H and σ2H 6= H. But H has index 2 and so
only has two cosets in Sn. Therefore it must be that σH = σ2H. But this can only happen
if σ = σ−1σ2 ∈ H, which is a contradiction! Therefore it must be the case that σ ∈ H. Since
σ was an arbitrary 3-cycle, we conclude that H contains all 3-cycles.



(b) If H ≤ Sn has index 2, then part (a) tells us that H contains every 3-cycle. Since every
element of An is a product of 3-cycles, it follows that An ≤ H. But [Sn : An] = 2 = [Sn : H]
and so H = An by the following exercise.

5. We must make the additional assumption that G is finite. In this case, Lagrange’s
Theorem tells us that

|G|
|H|

= [G : H] = [G : K] =
|G|
|K|

so that |H| = |K|. Since H ≤ K and the two sets are finite, we conclude immediately that
H = K.

6. Choose x ∈ Ha ∩ Hb. Write x = h1a = h2b for some h1, h2 ∈ H. Then a = h−1
1 x. Let

y ∈ Ha. Then y = ha for some h ∈ H and so

y = ha = hh−1
1 x = hh−1

1 h2b ∈ Hb.

y being an arbitrary element of Ha, we conclude that Ha ⊂ Hb. A similar argument shows
that Hb ⊂ Ha as well, so that Ha = Hb.

7. Let G be a group of order 110. Let x ∈ G, x 6= e. Then |x| 6= 1 and divides 110 = 2 ·5 ·11.
It follows that |x| must be divisible by one of the primes 2, 5 or 11. If this prime is p, then
the cyclic subgroup 〈x〉 has a unique subgroup H of order p, which is also cyclic (by the
Fundamental Theorem of Cyclic Groups). Since “being a subgroup of” is transitive, H is
the cyclic subgroup of G we sought to prove existed.

8. Since x|G| = e for all a ∈ G, the exponent of a finite group must be finite (and ≤ |G|).
Let n ∈ Z+ be the exponent of G and suppose that m has the property that xm = e for all
x ∈ G. Write m = qn + r with q ∈ Z and 0 ≤ r < n. Then, for any x ∈ G we have

xr = xm−qn = xm(x−q)n = ee = e

which contradicts the choice of n as the least positive integer with this property unless r = 0.
That is, if xm = e for all x ∈ G, then n divides m. Since |G| has this property, we conclude
that n divides |G|, i.e. the exponent of G divides |G|.

9. We know that the orders of elements in S5 are given by the least common multiples of



the terms in the possible partitions of 5 into positive integers. The partitions are

5 = 1 + 1 + 1 + 1 + 1

5 = 2 + 1 + 1 + 1

5 = 2 + 2 + 1

5 = 3 + 1 + 1

5 = 3 + 2

5 = 4 + 1

5 = 5

and the orders (lcm’s) are 1, 2, 3, 4, 5, 6. If σ ∈ S5 then σn = ε if and only if n is a multiple of
|σ|. Hence, if n is the exponent of S5 then n is divisible by all of the orders of the elements of
S5. The least positive integer with this property is the least common multiple of 1, 2, 3, 4, 5, 6
which is 60.

As above, the orders of the elements in S6 are determined by the least common mutltiples
of the terms in the possible partitions of 6 into positive integers. The partitions of 6 are

6 = 1 + 1 + 1 + 1 + 1 + 1

6 = 2 + 1 + 1 + 1 + 1

6 = 2 + 2 + 1 + 1

6 = 2 + 2 + 2

6 = 3 + 1 + 1 + 1

6 = 3 + 2 + 1

6 = 3 + 3

6 = 4 + 1 + 1

6 = 4 + 2

6 = 5 + 1

6 = 6

The question is, which of these partitions correspond to elements of A6? Since an l-cycle
can be written as a product of l − 1 transpositions, a permutation with cycle structure
corresponding to the partition 6 = l1 + l2 + · · · lk can be written as the product of (l1 − 1) +
(l2− 1) + · · ·+ (lk − 1) = 6− k transpositions. Hence, the permutations with cycle structure
corresponding to the partition 6 = l1 + l2 + · · ·+ lk is even if and only if k is even. Therefore
the orders of the elements of A6 are given by the lcm’s of the terms in the partitions of 6
into an even number of parts. These are easily identified in the list above, and their lcm’s
are 1, 2, 3, 4, 5. As above, it is the lcm of these orders that provide the exponent of A6.
Hence, the exponent of A6 is also 60.

10. We will show that if p and q are distinct prime integers then p(Q×)2 6= q(Q×)2. Since
there are infinitely many primes in Z, this will suffice to prove that there are infinitely many
cosets of (Q×)2 in Q×.



So, suppose that p, q are distinct prime integers. We know that p(Q×)2 = q(Q×)2 if
and only if p−1q ∈ (Q×)2 which happens if and only if there are non-zero integers a, b so
that p−1q = (a/b)2, or b2q = a2p. However, this contradicts the fundamental theorem of
arithmetic since q occurs an odd number of times in b2q but an even number of times in a2p
(since p 6= q). We conclude that it is impossible to have p(Q×)2 = q(Q×)2 and hence that
each prime integers gives rise to a distinct coset of (Q×)2 in Q×, which is what we sought to
show.

11. If φ : Q× → R× is an isomorphism then φ(x) is a square if and only if x is a square.
This is left as an exercise to the reader and is true of any group isomorphism. It follows
from this that φ((Q×)2) = (R×)2. But then we’d have

∞ = [Q× : (Q×)2] = [φ(Q×) : φ((Q×)2)] = [R× : (R×)2] = 2.

Here we have used the facts that isomorphisms preserve indices of corresponding subgroups
and that [R× : (R×)2] = 2, which was proven in class. The absurdity ∞ = 2 shows that the
existence of φ is impossible and so Q× 6∼= R×.

12. Since the cycles (13579) and (268) are disjoint, the order of β2 is the lcm of their lengths,
which is 15. Therefore

15 = |β2| = |β|
(|β|, 2)

.

Since (|β|, 2) = 1 or 2, we conclude that |β| = 15 or 30. It is not hard to see that 30 cannot
be the order of an element of S9 and so it must be that |β| = 15. But then |β| = |β2| so that
〈β〉 = 〈β2〉, which tells us that β is a power of β2. Determining which power is easy enough:
we need to find k so that β2k = β or, equivalently, β2k−1 = ε. But this happens if and only
if 15 = |β| divides 2k − 1. k = 8 obviously satisfies this criterion. Therefore

β = β2·8 = β16 = (13579)16(268)16 = (13579)1(268)1 = (13579)(268).

Here we have used the facts that (13579) and (268) commute and have orders 5 and 3,
respectively.

13. We have seen that
Aut(Z25) ∼= U(25).

Moreover, it is straightforward to verify that U(25) is cyclic of order 20, so that U(25) ∼= Z20.
Hence

Aut(Aut(Z25)) ∼= Aut(U(25)) ∼= Aut(Z20) ∼= U(20).


