MATH 3362 FALL 2006 Modern Algebra

FINAL EXAM PRACTICE PROBLEMS

Problem 1. The following is a well-known fact about finite groups.

Proposition 1. If G is a group and $|G| = p^n$ for some prime p and $n \in \mathbb{Z}^+$, then |Z(G)| > 1.

Use this proposition and the G/Z Theorem to prove that every group of order p^2 , p prime, is abelian.

Problem 2. The Fundamental Theorem of Finite Abelian Groups implies that $\mathbb{Z}_4 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \not\cong \mathbb{Z}_4 \oplus \mathbb{Z}_4$. Prove this directly (please don't build a Cayley table).

Problem 3. Let G = U(32) and $H = \{1, 31\}$. Then G/H is abelian of order 8, so is isomorphic to exactly one of \mathbb{Z}_8 , $\mathbb{Z}_4 \oplus \mathbb{Z}_2$ or $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$. Determine which one.

Problem 4. Let G be a group and $N \triangleleft G$. Suppose $N \leq H \leq G$. Then $N \triangleleft H$ and $H/N \leq G/N$ (you don't need to prove this). Show that $H/N \triangleleft G/N$ if and only if $H \triangleleft G$.

Problem 5. Use the first isomorphism theorem and the determinant map to prove that $GL(2,\mathbb{R})/SL(2,\mathbb{R}) \cong \mathbb{R}^{\times}$.

Problem 6. Let G be a group and suppose $N \triangleleft G$ with [G:N] = 5. Use this information to construct a nontrivial homomorphism $\phi: G/N \rightarrow D_5$.

Problem 7. Show that $\operatorname{Aut}(U(8)) \cong S_3$.

Problem 8. Express Aut(U(343)) as a product of cyclic groups of prime power order.

Problem 9. How many non-isomorphic abelian groups of order 1729 are there?

Problem 10. Let p, q be odd primes and $m, n \in \mathbb{Z}^+$. Show that $U(p^m) \oplus U(q^n)$ is not cyclic.

Problem 11. Let a, b be relatively prime nonzero integers.

(a) Show that the map $\phi : \mathbb{Z} \oplus \mathbb{Z} \to \mathbb{Z}$ defined by $(x, y) \mapsto bx - ay$ is an onto homomorphism.

- (b) Show that $\ker \phi = \langle (a, b) \rangle$.
- (c) Show that $(\mathbb{Z} \oplus \mathbb{Z})/\langle (a, b) \rangle \cong \mathbb{Z}$.

Problem 12. Let $\phi : \mathbb{Z}_{17} \to G$ be a homomorphism. If ϕ is not one-to-one, determine ϕ .

Problem 13. Let $\phi : \mathbb{Z}_{60} \to G$ be an onto homomorphism.

- (a) If $|\ker \phi| = 4$, determine G (up to isomorphism).
- (b) If |G| = 10, determine ker ϕ .

Problem 14. Let G, H be groups. Show that the projection

$$\pi: G \oplus H \rightarrow G$$

 $(g,h) \mapsto g$

is a homomorphism. Determine $\ker \pi$ and $\mathrm{Im} \pi.$

Problem 15. Let $\phi : G \to H$ be a homomorphism of groups. Prove that for any $x, y \in G$, $\phi(x) = \phi(y)$ if and only if $x(\ker \phi) = y(\ker \phi)$.

Problem 16. How many homomorphisms are there from \mathbb{Z}_{20} onto \mathbb{Z}_{10} ?

Problem 17. Let $\phi : G \to \mathbb{Z}_6 \oplus \mathbb{Z}_3$ be a homomorphism with $|\ker \phi| = 5$. Prove that G must have normal subgroups of sizes 5, 10, 15, 20, 30 and 60.

Problem 18. Prove that $(\mathbb{Z}_{17} \oplus \mathbb{Z}_{26})/\langle (8,5) \rangle$ is cyclic. What is its order?

Problem 19. Prove or disprove:

$$\mathbb{Z}_{100} \oplus \mathbb{Z}_{50} \oplus \mathbb{Z}_{25} \cong \mathbb{Z}_{25} \oplus \mathbb{Z}_{25} \oplus \mathbb{Z}_{25} \oplus \mathbb{Z}_{8}.$$

Problem 20. State and prove the First Isomorphism Theorem.