

Modern Algebra 1 Spring 2010

EXAM 2 REVIEW

Exercise 1. State and prove the following theorems.

- a. Cayley's Theorem
- **b.** Lagrange's Theorem
- **c.** The classification of cyclic groups
- **d.** The classification of normal subgroups
- e. The First Isomorphism Theorem

Exercise 2. Let R_1 and R_2 be rings.

- a. Since $(R_1, +)$ and $(R_2, +)$ are abelian groups, we know that $R_1 \times R_2$ is an abelian group under component-wise addition. Show that $R_1 \times R_2$ is a ring if we define multiplication component-wise as well.
- **b.** Show that if R_1 and R_2 both have unity then so does $R_1 \times R_2$. Prove an analogous statement for commutativity.
- **c.** Show that if R_1 and R_2 both have unity then $(R_1 \times R_2)^{\times} = R_1^{\times} \times R_2^{\times}$.

Exercise 3. [Aut(\mathbb{Z}_n) and U(n), part 2] We now know that $U(n) = \{m \in \mathbb{Z}_n \mid \gcd(m, n) = 1\}$ is a group under multiplication mod n. We also have seen that given any $f \in \operatorname{Aut}(\mathbb{Z}_n)$ there is a $k \in U(n)$ so that f(1) = k. Use this to prove that $\operatorname{Aut}(\mathbb{Z}_n)$ (which is a group under composition) is isomorphic to U(n).

Exercise 4. Let R be a ring. An element $x \in R$ is called *nilpotent* if there is an $n \in \mathbb{N}$ so that $x^n = 0$.

- **a.** If R is commutative and $x, y, z \in R$ with y and z nilpotent, prove that y z and xy are both nilpotent.
- **b.** If R is a commutative ring, show that $M_2(R)$ always has nonzero nilpotent elements.

Exercise 5.[Proof of the Correspondence Principle] Let G be a group and $N \triangleleft G$. Let $S_1 = \{H \mid N \leq H \leq G\}$ and $S_2 = \{K \mid K \leq G/N\}$. Let $F: S_1 \rightarrow S_2$ be given by F(H) = H/N.

- **a.** Prove that F is a bijection. [Suggestion: Find F^{-1} .]
- **b.** Let $H \in S_1$. Prove that $H \triangleleft G$ if and only if $F(H) \triangleleft G/N$.
- **c.** Let $H_1, H_2 \in S_1$. Prove that $H_1 \leq H_2$ if and only if $F(H_1) \leq F(H_2)$.

Exercise 6. Let G be the set of all rational functions on \mathbb{R} of the form $f(x) = \frac{ax+b}{cx+d}$ where $ad-bc \neq 0$ (such a function is called a fractional linear transformation).

- **a.** Prove that G is a group under function composition.
- **b.** Define $\varphi: \operatorname{GL}_2(\mathbb{R}) \to G$ by $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \frac{ax+b}{cx+d}$. Prove that φ is a homomorphism and compute its kernel.

Exercise 7. Let G be a group and $H \leq G$. Recall the homomorphism $T: G \to \operatorname{Sym}(G/H)$ given by $T(x) = T_x$, where $T_x(yH) = xyH$ for all $y \in G$. Prove that the kernel of T is the normal core of H, $\operatorname{Core}(H) = \bigcap_{x \in G} xHx^{-1}$.

Exercise 8. A group G is called *solvable* is there is a sequence of subgroups

$$\{e\} = H_0 \le H_1 \le \dots \le H_{r-1} \le H_r = G$$

so that $H_i \triangleleft H_{i+1}$ for all i and H_{i+1}/H_i is abelian for all i. Prove that if G is solvable and $K \leq G$ then K is solvable. Also prove that if $K \triangleleft G$ then G/K is solvable, too.