

 $\begin{array}{c} {\rm Modern} \ {\rm Algebra} \ 1 \\ {\rm Spring} \ 2010 \end{array}$ 

Homework 1.1 Due January 20

**Exercise 1.** Let G be a nonempty set with a binary operation. We say G is a monoid if: (i) a(bc) = (ab)c for all  $a, b, c \in G$  and (ii) there is an  $e \in G$  (called an *identity*) so that ae = ea = a for all  $a \in G$ . Note that in particular every group is a monoid.

Which of the following sets with binary operations are monoids? Be sure to justify your answers!

- **a.**  $\mathbb{N}$  with multiplication.
- **b.**  $\mathbb{N}$  with addition.
- **c.**  $\mathbb{Q}^{\times}$  with division.
- **d.** The set P of  $2 \times 2$  matrices with positive real entries, and matrix multiplication.

**Exercise 2.** Prove that the identity element in any monoid (and hence any group) is unique. [*Hint:* If you have two identities, what happens when you multiply them together?]

**Exercise 3.** Prove that matrix multiplication is an associative operation on  $M_2(\mathbb{R})$ .