

Modern Algebra 1 Spring 2010 Homework 1.2 Due January 20

**Exercise 4.** Let G be a group. Use induction to prove that if  $a_1, a_2, \ldots, a_n \in G$  then  $(a_1a_2\cdots a_n)^{-1} = a_n^{-1}\cdots a_2^{-1}a_1^{-1}$ .

**Exercise 5.** Prove that  $|S_n| = n!$  and that  $S_n$  is non-abelian if  $n \ge 3$ .

**Exercise 6.** Find an element  $\sigma \in S_5$  so that  $\sigma^6 = \epsilon$  (the identity), but  $\sigma^i \neq \epsilon$  for i = 1, 2, 3, 4, 5.

**Exercise 7.** Let G be a nonempty set with an associative binary operation (such an object is called a *semigroup*). Prove that G is a group if and only if for every  $a, b \in G$  the equations ax = b and ya = b have unique solutions  $x, y \in G$ . [*Hint:* Use the "one-sided" theorem proven in class.]