Exercise 1. Let

$$
\sigma=\left(\begin{array}{ccccccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
13 & 2 & 15 & 14 & 10 & 6 & 12 & 3 & 4 & 1 & 7 & 9 & 5 & 11 & 8
\end{array}\right)
$$

and let

$$
\tau=\left(\begin{array}{ccccccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
14 & 9 & 10 & 2 & 12 & 6 & 5 & 11 & 15 & 3 & 8 & 7 & 4 & 1 & 13
\end{array}\right)
$$

Find the cycle decompositions of each of the following permutations: $\sigma, \tau, \sigma \tau, \tau \sigma$, and $\tau^{2} \sigma$.

Exercise 2. For each of the permutations α whose cycle decompositions you computed in the preceding exercise, determine the least $n \in \mathbb{N}$ so that $\alpha^{n}=(1)$.

Exercise 3.

a. If $\tau=(12)(34)(56)(78)(910)$ determine whether there is an n-cycle $\sigma(n \geq 10)$ with $\tau=\sigma^{k}$ for some integer k.
b. If $\tau=(12)(345)$ determine whether there is an n-cycle $\sigma(n \geq 5)$ with $\tau=\sigma^{k}$ for some integer k.

Exercise 4. Prove that $\operatorname{Sym}(\mathbb{N})$ is infinite (do not say that $\infty!=\infty$).

