

$\begin{array}{c} {\rm Modern} \ {\rm Algebra} \ 1 \\ {\rm Spring} \ 2010 \end{array}$

Homework 2.1 Due January 27

Exercise 1. Let

and let

Find the cycle decompositions of each of the following permutations: σ , τ , $\sigma\tau$, $\tau\sigma$, and $\tau^2\sigma$.

Exercise 2. For each of the permutations α whose cycle decompositions you computed in the preceding exercise, determine the least $n \in \mathbb{N}$ so that $\alpha^n = (1)$.

Exercise 3.

- **a.** If $\tau = (12)(34)(56)(78)(910)$ determine whether there is an *n*-cycle σ $(n \ge 10)$ with $\tau = \sigma^k$ for some integer k.
- **b.** If $\tau = (1\,2)(3\,4\,5)$ determine whether there is an *n*-cycle σ $(n \ge 5)$ with $\tau = \sigma^k$ for some integer k.

Exercise 4. Prove that $Sym(\mathbb{N})$ is infinite (do not say that $\infty! = \infty$).