Exercise 5. Let G be a group and $x, y \in G$. Prove that if $x y=y x^{-1}$ then $x^{n} y=y x^{-n}$ for all $n \in \mathbb{Z}$. [Note: Induction can be used to prove this for all $n \in \mathbb{N}$. Don't forget to deal with the negative integers as well.]

Exercise 6. Write out the Cayley (multiplication) table for D_{3}, expressing every element in the form $f^{i} r^{j}$.

Exercise 7. Show directly (i.e. without arguing geometrically) that every element of D_{n} of the form $f r^{j}$ is its own inverse.

Exercise 8. Show that if $x \in D_{n}$ is not a rotation then $r x=x r^{-1}$.

Exercise 9. If $n=2 k$ and $z=r^{k}$, show that z is the only nonidentity element of D_{n} that commutes with every other element.

