Modern Algebra 1 Spring 2010

Homework 3.1
Due February 3

Exercise 1. What is the largest possible order of an element of S_{7} ?

Exercise 2. Let $\sigma \in S_{n}$ and let $i \in\{1,2, \ldots, n\}$. We say that i is a fixed point of σ if $\sigma(i)=i$. Prove that if σ is a cycle containing i and i is a fixed point of σ^{k}, then the length of σ divides k.

Exercise 3. Let G be a group and let $a, b \in G$ satisfy $a b=b a$. If $|a|=m$ and $|b|=n$ show that $|a b|$ divides the least common multiple of m and n. Give an example of this situation in which $|a b|$ is not equal to the least common multiple.

Exercise 4. Let G be a group in which every element has order less than or equal to 2 . Show that G is abelian. [Hint: Consider $(a b)^{2}$ for arbitrary $a, b \in G$.]

Exercise 5. The exponent of a group G is the smallest $n \in \mathbb{N}$ so that $a^{n}=e$ for all $a \in G$.
a. Show that the exponent of G is the least common multiple of the orders of the elements in G.
b. Find the exponents of S_{3}, S_{4} and S_{5}.

