

 $\begin{array}{c} {\rm Modern} \ {\rm Algebra} \ 1 \\ {\rm Spring} \ 2010 \end{array}$ 

Homework 3.1 Due February 3

**Exercise 1.** What is the largest possible order of an element of  $S_7$ ?

**Exercise 2.** Let  $\sigma \in S_n$  and let  $i \in \{1, 2, ..., n\}$ . We say that *i* is a *fixed point* of  $\sigma$  if  $\sigma(i) = i$ . Prove that if  $\sigma$  is a cycle containing *i* and *i* is a fixed point of  $\sigma^k$ , then the length of  $\sigma$  divides *k*.

**Exercise 3.** Let G be a group and let  $a, b \in G$  satisfy ab = ba. If |a| = m and |b| = n show that |ab| divides the least common multiple of m and n. Give an example of this situation in which |ab| is not equal to the least common multiple.

**Exercise 4.** Let G be a group in which every element has order less than or equal to 2. Show that G is abelian. [*Hint:* Consider  $(ab)^2$  for arbitrary  $a, b \in G$ .]

**Exercise 5.** The *exponent* of a group G is the smallest  $n \in \mathbb{N}$  so that  $a^n = e$  for all  $a \in G$ .

- **a.** Show that the exponent of G is the least common multiple of the orders of the elements in G.
- **b.** Find the exponents of  $S_3, S_4$  and  $S_5$ .