Modern Algebra 1 Spring 2010

Homework 3.2
Due February 3

Exercise 6. Given a 2×2 matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, recall that it's determinant is $\operatorname{det} A=$ $a d-b c$. The transpose of A is the matrix $A^{T}=\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$. Prove the following properties of the determinant and the transpose. You can assume that the matrices involved all have real entires.
a. If A and B are both 2×2 matrices then $\operatorname{det} A B=\operatorname{det} A \operatorname{det} B$.
b. If A and B are both 2×2 matrices, then $(A B)^{T}=B^{T} A^{T}$.
c. If $\operatorname{det} A \neq 0$ (so that A^{-1} exists) then $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$.

Exercise 7. Let $G=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{Z}\right.$ and $\left.a d-b c \neq 0\right\}$. Prove or disprove: G is a group under matrix multiplication.

Exercise 8. Prove that $\mathrm{O}_{2}(\mathbb{R})=\left\{A \in \mathrm{M}_{2}(\mathbb{R}) \mid A A^{T}=I\right\}$ is a subgroup of $\mathrm{GL}_{2}(\mathbb{R}) . \mathrm{O}_{2}(\mathbb{R})$ is called the orthogonal group and its elements are the orthogonal matrices.

Exercise 9. Let G be a group, $H \leq G$ and $x \in G$. Prove that $x H x^{-1}=\left\{x y x^{-1} \mid y \in H\right\}$ is a subgroup of G.

