Exercise 10. The set $\mathrm{GL}_{2}(\mathbb{C})$ of invertible 2×2 matrices with complex entries can be shown to be a group under matrix multiplication. In fact, the proof given for matrices with real entries can be used, mutatis mutandis, do deal with the case of complex entries. Consider the matrices $A=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ and $B=\left(\begin{array}{cc}0 & i \\ i & 0\end{array}\right)$. Find all the elements in the subgroup $Q=\langle A, B\rangle$ of $\mathrm{GL}_{2}(\mathbb{C})$. [Hint: Show that A and B both have finite order and that $B A=A^{3} B$. Use this to prove that every element in Q can be written in the form $A^{i} B^{j}$, with only a limited number of possibilities for i and j.]

Exercise 11. Let $m, n \in \mathbb{Z}, H=\langle m\rangle$ and $K=\langle n\rangle$. Find (with proof) a necessary and sufficient condition for us to have $H \leq K$.

Exercise 12. A subgroup H of a group G is called maximal if $H \neq G$ and whenever we have $H \leq K \leq G$ then $K=H$ or $K=G$ (i.e. there are no subgroups "between" H and G). Use the result of the previous exercise to determine all the maximal subgroups of \mathbb{Z}.

Exercise 13. Let $H_{i}, i \in I$, be a collection of subgroups of a group G. Prove that $K=\bigcap_{i \in I} H_{i}$ is a subgroup of G. Must the union of subgroups also be a subgroup?

