Exercise 1. Recall the group $Q=\langle A, B\rangle$ where $A=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ and $B=\left(\begin{array}{cc}0 & i \\ i & 0\end{array}\right)$ (this group is known as the quaternion group, by the way). Find all the subgroups of Q and draw the subgroup lattice for Q. [Note: It may be useful to recall that $Q=\{ \pm I, \pm A, \pm B, \pm A B\}$, where I is the 2×2 identity matrix.]

Exercise 2. Determine all of the subgroups of \mathbb{Z} that contain $\langle 90\rangle$ and draw a lattice of these subgroups. This lattice is actually "isomorphic" to the subgroup lattice of \mathbb{Z}_{90}, as we'll see later.

Exercise 3. How does Lang's definition of an ideal in \mathbb{Z} (c.f. section I.3) compare with the notion of a subgroup of \mathbb{Z} ? How does his Theorem 3.1 compare to the theorem on the subgroups of \mathbb{Z} that we proved in class?

Exercise 4. Show that \mathbb{Q} (with addition) is not finitely generated, i.e. given any finite set $r_{1}, r_{2}, \ldots, r_{n} \in \mathbb{Q}$ then $\left\langle r_{1}, r_{2}, \ldots, r_{n}\right\rangle \neq \mathbb{Q}$. [Suggestion: Show that there are only a limited number of denominators that can be obtained from integral linear combinations of $r_{1}, r_{2}, \ldots, r_{n}$.]

