

 $\begin{array}{c} {\rm Modern} \ {\rm Algebra} \ 1 \\ {\rm Spring} \ 2010 \end{array}$

Homework 4.2 Due February 10

Exercise 5. Let $f: G \to H$ be a group homomorphism.

- **a.** Let $a \in G$. Prove that $f(a^n) = f(a)^n$ for all $n \in \mathbb{Z}$.
- **b.** Let $a \in G$. Prove that $f(\langle a \rangle) = \langle f(a) \rangle$.
- **c.** Let $a \in G$. Prove that if a has finite order then so does f(a). How are their orders related? Justify your answer.
- **d.** Let $K \leq H$. Prove that $f^{-1}(K) \leq G$.

Exercise 6. Let G be a group, $a \in G$ and $f : \mathbb{Z} \to \langle a \rangle$ be the homomorphism given by $f(n) = a^n$. If a has finite order prove that ker $f = \langle |a| \rangle$.

Exercise 7. Let G be an abelian group and let $n \in \mathbb{Z}$. Define $f: G \to G$ by $f(x) = x^n$.

- **a.** Prove that f is a homomorphism.
- **b.** Compute ker f.
- **c.** Use f to show that $\{y \in G \mid y = x^n \text{ for some } x \in G\}$ is a subgroup of G