Exercise 5. Let G be a group and for $a, b \in G$ define $a \sim b$ if and only if there is an $x \in G$ so that $x a x^{-1}=b$. Prove that \sim is an equivalence relation on G.

Exercise 6. Let $n \geq 2$ and $\sigma \in S_{n}$. Prove that $\sigma\left(a_{1} a_{2} \cdots a_{k}\right) \sigma^{-1}=\left(\sigma\left(a_{1}\right) \sigma\left(a_{2}\right) \cdots \sigma\left(a_{k}\right)\right)$. Use this to prove that two elements of S_{n} are conjugate if and only if their cycle decompositions have the same "cycle structure."

Exercise 7. For each of the following pairs σ, τ of permutations, find a permutation γ so that $\gamma \sigma \gamma^{-1}=\tau$.
a. $\sigma=(15)(23), \tau=(13)(45)$
b. $\sigma=(123)(46)(78), \tau=(135)(27)(48)$
c. $\sigma=(123)(456), \tau=(135)(246)$

Exercise 8. Compute $Z(Q)$. [See homework 4.1 for the definition of Q.]

