

Modern Algebra 1 Spring 2010 Homework 5.2 Due February 17

Exercise 5. Let G be a group and for $a, b \in G$ define $a \sim b$ if and only if there is an $x \in G$ so that $xax^{-1} = b$. Prove that \sim is an equivalence relation on G.

Exercise 6. Let $n \ge 2$ and $\sigma \in S_n$. Prove that $\sigma(a_1 a_2 \cdots a_k) \sigma^{-1} = (\sigma(a_1) \sigma(a_2) \cdots \sigma(a_k))$. Use this to prove that two elements of S_n are conjugate if and only if their cycle decompositions have the same "cycle structure."

Exercise 7. For each of the following pairs σ, τ of permutations, find a permutation γ so that $\gamma \sigma \gamma^{-1} = \tau$.

- **a.** $\sigma = (15)(23), \tau = (13)(45)$
- **b.** $\sigma = (123)(46)(78), \tau = (135)(27)(48)$
- **c.** $\sigma = (123)(456), \tau = (135)(246)$

Exercise 8. Compute Z(Q). [See homework 4.1 for the definition of Q.]