

Modern Algebra 1 Spring 2010 Homework 6.1 Due February 24

Exercise 1. Let G be a group, let $a \in G$ and let $T_a : G \to G$ be defined by $T_a(x) = ax$. Prove that T_a is a bijection. [Suggestion: Find T_a^{-1} .]

Exercise 2. Let $Q = \langle A, B \rangle = \{\pm I, \pm A, \pm B, \pm AB\}$ (c.f. Homework 4.1, Exercise 1). Identify Q with $\{1, 2, \dots, 8\}$ as follows:

Ι	A	-I	-A	B	AB	-B	-AB
\uparrow							
1	2	3	4	5	6	7	8

Under this identification, left-multiplication in Q by an element of Q yields a permutation in S_8 , and according to (the proof of) Cayley's theorem the resulting collection of permutations is a subgroup of S_8 isomorphic to Q. Find all of the elements of this subgroup.