Modern Algebra 1
Homework 8.3
Spring 2010

Exercise 10. Let $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x, y)=2 x-3 y$.
a. Prove that $f$ is a surjective homomorphism.
b. Find ker $f$ and describe it and its cosets geometrically.
c. The First Isomorphism Theorem implies that $f$ induces an isomorphism $\bar{f}:(\mathbb{R} \times$ $\mathbb{R}) / \operatorname{ker} f \rightarrow \mathbb{R}$. Describe this isomorphism geometrically.

Exercise 11. Let $G$ be a finite group, let $H \leq G$ and let $K \triangleleft G$. Prove that if $|H|$ is relatively prime to $[G: K]$ then $H \leq K$. [Hint: Given $a \in H$, by considering the orders of $a$ in $H$ and $a K$ in $G / K$, show that $\langle a\rangle \leq K$.]

Exercise 12. Lang, II.4.30.

