Homework 10.1
Due April 7

Exercise 1. Let G be a group and let $H, K \triangleleft G$. Prove that if $K \leq H$ and G / K is cyclic, then G / H is cyclic. [Suggestion: Use the Third Isomorphism Theorem and the fact (proven in earlier homework) that a quotient of a cyclic group is cyclic.]

Exercise 2. Let R be a commutative ring (with unity) and let

$$
M_{2}(R)=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in R\right\} .
$$

a. Show that if $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in M_{2}(R)^{\times}$then $\operatorname{det}(A)=a d-b c \in R^{\times}$. [Hint: The result of exercise 3.2.6.a is valid for any commutative ring.]
b. Show that if $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in M_{2}(R)$ and $\operatorname{det}(A)=a d-b c \in R^{\times}$, then $A \in M_{2}(R)^{\times}$.
[Hint: Show that the usual formula yields the inverse of A.]
c. Conclude that $A \in M_{2}(R)^{\times}$if and only if $\operatorname{det}(A) \in R^{\times}$.

Exercise 3. Given that $\mathbb{Z}_{n}^{\times}=U(n)$ for $n \geq 2$, prove that $\mathbb{Z}_{n}^{\times}=\mathbb{Z}_{n}-\{0\}$ if and only if n is prime. This completes the proof that \mathbb{Z}_{n} is a field if and only if n is prime.

Exercise 4. Let $A=\left(\begin{array}{cc}1 & 3 \\ -2 & 4\end{array}\right)$. Determine if A is a unit in $M_{2}(R)$ for the following choices of R.
a. $R=\mathbb{Q}$
b. $R=\mathbb{Z}$
c. $R=\mathbb{Z}_{n}$ (your answer will depend on n)

