

Modern Algebra 1 Spring 2010 Homework 10.1 Due April 7

Exercise 1. Let G be a group and let $H, K \triangleleft G$. Prove that if $K \leq H$ and G/K is cyclic, then G/H is cyclic. [Suggestion: Use the Third Isomorphism Theorem and the fact (proven in earlier homework) that a quotient of a cyclic group is cyclic.]

Exercise 2. Let R be a commutative ring (with unity) and let

$$M_2(R) = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \middle| a, b, c, d \in R \right\}.$$

- **a.** Show that if $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(R)^{\times}$ then $\det(A) = ad bc \in R^{\times}$. [*Hint:* The result of exercise 3.2.6.a is valid for *any* commutative ring.]
- **b.** Show that if $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(R)$ and $\det(A) = ad bc \in R^{\times}$, then $A \in M_2(R)^{\times}$. [*Hint:* Show that the usual formula yields the inverse of A.]
- **c.** Conclude that $A \in M_2(R)^{\times}$ if and only if det $(A) \in R^{\times}$.

Exercise 3. Given that $\mathbb{Z}_n^{\times} = U(n)$ for $n \geq 2$, prove that $\mathbb{Z}_n^{\times} = \mathbb{Z}_n - \{0\}$ if and only if n is prime. This completes the proof that \mathbb{Z}_n is a field if and only if n is prime.

Exercise 4. Let $A = \begin{pmatrix} 1 & 3 \\ -2 & 4 \end{pmatrix}$. Determine if A is a unit in $M_2(R)$ for the following choices of R.

- **a.** $R = \mathbb{Q}$
- **b.** $R = \mathbb{Z}$
- c. $R = \mathbb{Z}_n$ (your answer will depend on n)