

Modern Algebra 1 Spring 2010

Homework 11.2
Due April 14

Exercise 4. Determine if the permutations in Exercise 1 are even or odd.

Exercise 5. Prove that a cycle in S_{n} is even if and only if its length is odd.

Exercise 6. Let $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a function of n variables $(n \geq 2)$.
a. Prove that $H_{f}=\left\{\sigma \in S_{n} \mid \sigma f=f\right\}$ is a subgroup of S_{n}.
b. If $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1}+x_{2}+x_{3} x_{4}$ show that $H_{f} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$
c. Find a polynomial $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ so that $H_{f}=\langle(1234),(13)\rangle$.

