

Modern Algebra 1 Spring 2010 Homework 12.2 Due April 21

Exercise 3. Let $f: G \to H$ be a homomorphism of abelian groups. We say that f splits if there is a homomorphism $g: H \to G$ so that $f \circ g = \mathrm{Id}_H$. Show that if f splits then $G \cong \ker f \times \mathrm{Im} f$. [Hint: Define $F: \ker f \times \mathrm{Im} f \to G$ by F(x, y) = x + g(y). Prove that F is an isomorphism.]

Exercise 4. Let G be a finite abelian group that is not cyclic. Show that there is a prime p that divides |G| so that G contains a subgroup isomorphic to $\mathbb{Z}_p \times \mathbb{Z}_p$.