

$\begin{array}{c} {\rm Modern} \ {\rm Algebra} \ 1 \\ {\rm Spring} \ 2010 \end{array}$

Homework 12.3 Due April 21

Exercise 5. Let G be an (additive) abelian group and let $m \in \mathbb{Z}$.

- **a.** Prove that the function $f_m: G \to G$ given by $f_m(x) = mx$ is a homomorphism.
- **b.** Use part **a** to show that G_m and $mG = \{mx \mid x \in G\}$ are both subgroups of G.
- **c.** If G is finite, under what conditions on m and |G| is f_m injective?

Exercise 6. If p is a prime and G is an abelian p-group, show that the homomorphism f_p of the preceding exercise is *not* onto. Conclude that |pG| < |G|.

Exercise 7. If p is a prime and $n \in \mathbb{N}$ prove that $p\mathbb{Z}_{p^n} \cong \mathbb{Z}_{p^{n-1}}$. [Suggestion: Use the homomorphism f_p of exercise 5 and the fact that subgroups of cyclic groups are cyclic.]