P

Theorem List 1

Modern Algebra 1 Spring 2010

Throughout what follows, G is a group, $a_i \in G$, e denotes the identity in G (when multiple groups are involved the identity in question is understood), and m, n denote arbitrary integers. S_n will denote the symmetric group on n letters. It should also be understood that this list of facts is not meant to be a comprehensive group (no pun intended) of things to know for the upcoming midterm.

Theorem 1. Let G be a group.

- **a.** The identity element in G is unique.
- **b.** The inverse of $a \in G$ is unique.
- **c.** Given $a_1, a_2, \ldots, a_n \in G$, the product $a_1 a_2 \cdots a_n$ is independent of how the elements in the product are pairwise associated.

Theorem 2. Given $a \in G$ and $m, n \in \mathbb{Z}$, the usual rules of exponents hold. That is:

- **a.** $(a^m)(a^n) = a^{m+n};$
- **b.** $(a^m)^n = a^{mn};$

a.
$$a^0 = e$$
.

Theorem 3. If $\sigma \in S_n$ is an m-cycle then $\sigma^k = (1)$ if and only if m divides k.

Theorem 4. If $\sigma \in S_n$ then $|\sigma|$ is the least common multiple of the the lengths of the cycles in the cycle decomposition of σ .

Theorem 5. The group D_n is generated by two elements r and f which satisfy $r^n = f^2 = e$ and $rf = fr^{-1} = fr^{n-1}$, so that $D_n = \langle r, f \rangle = \{f^i r^j | i = 0, 1 j = 0, 1, ..., n-1\}$, and each element specified is distinct.

Theorem 6. If G is finite then every element of G has finite order.

Theorem 7. Let $a \in G$. Then $a^n = e$ if and only if the order of a divides n.

Theorem 8. Let $a \in G$. Then

$$|a^n| = \frac{|a|}{\gcd(|a|, n)}.$$

Theorem 9. If $m \in Z_n$ then

$$m| = \frac{n}{\gcd(m, n)}.$$

Theorem 10. A nonempty subset H of G is a subgroup if and only if the following two conditions hold.

- **a.** For all $a, b \in H$, $ab \in H$.
- **b.** For all $a \in H$, $a^{-1} \in H$.

Theorem 11. A nonempty subset H of G is a subgroup if and only if for all $a, b \in H$, $ab^{-1} \in H$.

Theorem 12. Every subgroup H of \mathbb{Z} is of the form $H = \langle n \rangle = \{kn \mid k \in \mathbb{Z}\}$. If $H \neq \{0\}$ then n may be taken to be the least positive element of H, and n uniquely determines H.

Theorem 13. Let $f : G \to H$ be a group homomorphism. Then:

- **a.** f(e) = e;
- **b.** $f(a^{-1}) = f(a)^{-1}$ for all $a \in G$;
- **c.** $f(a^n) = f(a)^n$ for all $a \in G$ and $n \in \mathbb{Z}$;
- **d.** If $K \leq G$ then $f(K) \leq H$;
- e. If $K \leq H$ then $f^{-1}(K) \leq G$.

Theorem 14. The composition of group homomorphisms is a homomorphism.

Theorem 15. The composition of group isomorphisms is an isomorphism. The inverse of a group isomorphism is an isomorphism.

Theorem 16. A group homomorphism is injective if and only if its kernel is trivial.

Theorem 17. If $f: G \to H$ is an injective homomorphism then $G \cong \text{Im } f$.

Theorem 18. Let $a \in G$. Conjugation by a $(c_a(x) = axa^{-1})$ is an automorphism of G (called an inner automorphism of G). The map $a \mapsto c_a$ is a homomorphism of G to Aut G. Its kernel is Z(G).